

Least Squares Data Fitting

- Existence, Uniqueness, and Conditioning 2
- Solving Linear Least Squares Problems 3

Least Squares Data Fitting

Method of Least Squares

- Measurement errors are inevitable in observational and experimental sciences
- Errors can be smoothed out by averaging over many cases, i.e., taking more measurements than are strictly necessary to determine parameters of system
- Resulting system is *overdetermined*, so usually there is no exact solution
- In effect, higher dimensional data are projected into lower dimensional space to suppress irrelevant detail
- Such projection is most conveniently accomplished by method of *least squares*

Least Squares Data Fitting

Linear Least Squares

- For linear problems, we obtain *overdetermined* linear system Ax = b, with $m \times n$ matrix A, m > n
- System is better written $Ax \cong b$, since equality is usually not exactly satisfiable when m > n
- Least squares solution x minimizes squared Euclidean norm of residual vector r = b Ax,

$$\min_{\bm{x}} \|\bm{r}\|_2^2 = \min_{\bm{x}} \|\bm{b} - \bm{A}\bm{x}\|_2^2$$

Least Squares Idea

Given $\underline{b} \in \mathbb{R}^m$, with m > n, find:

$$\underline{y} := A\underline{x} = \underline{a}_1 x_1 + \underline{a}_2 x_2 + \dots + \underline{a}_n \underline{x}_n \approx \underline{b}$$
$$\underline{r} := \underline{b} - A\underline{x} = \underline{b} - \underline{y}$$

Least squares:

Minimize
$$||\underline{r}||_2 = \left[\sum_{i=1}^m (b_i - y_i)^2\right]^{\frac{1}{2}}$$

This system is overdetermined.

There are more equations than unknowns.

Least Squares Idea

With m > n, we have:

- Lots of data ($\underline{b} \in \mathbb{R}^m$)
- A few model parameters (x_1, x_2, \ldots, x_n)
- A few candidate basis vectors $(\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n)$
- Our estimate, $\underline{y} = A\underline{x}$

The matrix A is tall and thin.

Most Important Picture

Geometric relationships among b, r, and span(A) are shown in diagram

- □ The vector **y** is the *orthogonal projection* of **b** onto span(**A**).
- □ The projection results in minimization of $|| r ||_2$, which, as we shall see, is equivalent to having $r := b Ax \perp \text{span}(A)$

1D Projection

• Consider the 1D subspace of \mathbb{R}^2 spanned by \mathbf{a}_1 :

```
\alpha \mathbf{a}_1 \in \operatorname{span}{\mathbf{a}_1}.
```

- The *projection* of a point $\mathbf{b} \in \mathbb{R}^2$ onto $\operatorname{span}\{\mathbf{a}_1\}$ is the point on the line $\mathbf{y} = \alpha \mathbf{a}_1$ that is closest to \mathbf{b} .
- To find the projection, we look for the value α that minimizes $||\mathbf{r}|| = ||\alpha \mathbf{a}_1 \mathbf{b}||$ in the 2-norm. (Other norms are also possible.)

1D Projection

• Minimizing the square of the residual with respect to α , we have

$$\frac{d}{d\alpha} ||\mathbf{r}||^2 =$$

$$= \frac{d}{d\alpha} (\mathbf{b} - \alpha \mathbf{a}_1)^T (\mathbf{b} - \alpha \mathbf{a}_1)$$

$$= \frac{d}{d\alpha} [\mathbf{b}^T \mathbf{b} + \alpha^2 \mathbf{a}_1^T \mathbf{a}_1 - 2\alpha \mathbf{a}_1^T \mathbf{b}$$

$$= 2\alpha \mathbf{a}_1^T \mathbf{a}_1 - 2 \mathbf{a}_1^T \mathbf{b} = 0$$

• For this to be a minimum, we require the last expression to be zero, which implies

$$\alpha = \frac{\mathbf{a}_1^T \mathbf{b}}{\mathbf{a}_1^T \mathbf{a}_1}, \implies \mathbf{y} = \alpha \mathbf{a}_1 = \frac{\mathbf{a}_1^T \mathbf{b}}{\mathbf{a}_1^T \mathbf{a}_1} \mathbf{a}_1.$$

- We see that **y** points in the direction of **a**₁ and has magnitude that scales as **b** (but not with **a**₁).
- Note that the numerator in the expression above can be zero; the denominator cannot unless $\mathbf{a}_1 = \mathbf{0}$.

Projection in Higher Dimensions

- Here, we have basis coefficients x_i written as $\mathbf{x} = [x_1 \dots x_n]^T$.
- As before, we minimize the square of the norm of the residual

$$\begin{aligned} |\mathbf{r}||^2 &= ||A\mathbf{x} - \mathbf{b}||^2 \\ &= (A\mathbf{x} - \mathbf{b})^T (A\mathbf{x} - \mathbf{b}) \\ &= \mathbf{b}^T \mathbf{b} - \mathbf{b}^T A \mathbf{x} - (A \mathbf{x})^T \mathbf{b} + \mathbf{x}^T A^T A \mathbf{x} \\ &= \mathbf{b}^T \mathbf{b} + \mathbf{x}^T A^T A \mathbf{x} - 2 \mathbf{x}^T A^T \mathbf{b}. \end{aligned}$$

• As in the 1D case, we require stationarity with respect to all coefficients

$$\frac{d}{dx_i} ||\mathbf{r}||^2 = 0$$

- The first term is constant.
- The second and third are more complex.

Projection in Higher Dimensions

• Define
$$\mathbf{c} = A^T \mathbf{b}$$
 and $H = A^T A$ such that

$$\mathbf{x}^{T} A^{T} \mathbf{b} = \mathbf{x}^{T} \mathbf{c} = x_{1}c_{1} + x_{2}c_{2} + \dots x_{n}c_{n}.$$
$$\mathbf{x}^{T} A^{T} A \mathbf{x} = \mathbf{x}^{T} H \mathbf{x} = \sum_{j=1}^{n} \sum_{k=1}^{n} x_{k} H_{kj} x_{j}$$

• Differentiating with respect to x_i ,

$$\frac{d}{dx_i} \left(\mathbf{x}^T A^T \mathbf{b} \right) = c_i = \left(A^T \mathbf{b} \right)_i, \quad \text{and}$$

$$\frac{d}{dx_i} \left(\mathbf{x}^T H \mathbf{x} \right) = \sum_{j=1}^n H_{ij} x_j + \sum_{k=1}^n x_k H_{ki}$$
$$= 2 \sum_{j=1}^n H_{ij} x_j = 2 (H \mathbf{x})_i.$$

Projection in Higher Dimensions

• From the preceding pages, the minimum is realized when

$$0 = \frac{d}{dx_i} \left(\mathbf{x}^T A^T A \mathbf{x} - 2\mathbf{x}^T A^T \mathbf{b} \right) = 2 \left(A^T A \mathbf{x} - A^T \mathbf{b} \right)_i, \quad i = 1, \dots, n$$

• Or, in matrix form:

$$\mathbf{x} = \left(A^T A\right)^{-1} A^T \mathbf{b}.$$

• As in the 1D case, our *projection* is

$$\mathbf{y} = A\mathbf{x} = A \left(A^T A\right)^{-1} A^T \mathbf{b}.$$

- \mathbf{y} has units and length that scale with \mathbf{b} , but it lies in the range of A.
- It is the projection of **b** onto R(A).

Note: (A^TA)⁻¹ exists as long as the columns of A are independent.

Important Example: Weighted Least Squares

• Standard inner-product:

$$(u, v)_2 := \sum_{i=1}^m u_i v_i = \mathbf{u}^T \mathbf{v},$$

 $||\mathbf{r}||_2^2 = \sum_{i=1}^m r_i^2 = \mathbf{r}^T \mathbf{r},$

• Consider *weighted* inner-product:

$$(u,v)_W := \sum_{i=1}^m u_i w_i v_i = \mathbf{u}^T W \mathbf{v}$$
, where

$$W = \begin{bmatrix} w_1 & & & \\ & w_2 & & \\ & & \ddots & \\ & & & w_m \end{bmatrix}, \quad w_i > 0.$$

$$||\mathbf{r}||_w^2 = \sum_{i=1}^m w_i r_i^2 = \mathbf{r}^T W \mathbf{r},$$

• If we want to minimize in a weighted norm:

Find $\mathbf{x} \in \mathbb{R}^n$ such that $||\mathbf{r}||_W^2$ is minimized.

• Require

$$\frac{d}{dx_i} \left[(\mathbf{b} - A\mathbf{x})^T W (\mathbf{b} - A\mathbf{x}) \right]$$

$$= \frac{d}{dx_i} \left[\mathbf{b}^T W \mathbf{b} + \mathbf{x}^T A^T W A \mathbf{x} - \mathbf{x}^T A^T W \mathbf{b} - \mathbf{b}^T W A \mathbf{x} \right]$$

$$= \frac{d}{dx_i} \left[\mathbf{x}^T A^T W A \mathbf{x} - 2\mathbf{x}^T A^T W \mathbf{b} \right]$$

$$= 0.$$

• Thus,
$$\mathbf{x} = (A^T W A)^{-1} A^T W \mathbf{b},$$

 $\mathbf{y} = A \mathbf{x} = A (A^T W A)^{-1} A^T W \mathbf{b}, \approx \mathbf{b}.$

- y is the **weighted** least-squares approximation to b.
- Works for any SPD W, not just (positive) diagonal ones.
- Can be used to solve linear systems.

- In particular, suppose $W\mathbf{b} = \mathbf{z}$.
- Linear system \mathbf{z} is right-hand side, known. — \mathbf{b} is unknown.
- Want to find weighted least-squares fit, $\mathbf{y} \approx \mathbf{b}$, minimizing $||\mathbf{y} \mathbf{b}||_W^2$ with $\mathbf{y} \in \mathcal{R}(A)$.
- Answer:

$$\mathbf{y} = A \left(A^T W A \right)^{-1} A^T W \mathbf{b}$$
$$= A \left(A^T W A \right)^{-1} A^T \mathbf{z}$$
$$= A \mathbf{x}$$

 ← Here, we approximate b=W⁻¹z without knowing b. We only need matrix-vector products of the form Wa_j plus some means of effecting inversion of the small nxn matrix, A^TWA.

- Suppose W is a sparse $m \times m$ matrix with (say) $m > 10^6$.
- Factor cost is likely very large (superlinear in m).
- If $A = (\mathbf{a}_1 \, \mathbf{a}_2 \, \cdots \, \mathbf{a}_n), n \ll m$, can form *n* vectors,

 $WA = (W\mathbf{a}_1 W\mathbf{a}_2 \cdots W\mathbf{a}_n),$

and the *Gram* matrix, $\tilde{W} = A^T W A = [\mathbf{a}_i^T W \mathbf{a}_j]$, and solve

$$\widetilde{W}\mathbf{x} = A^T\mathbf{z} = \begin{pmatrix} \mathbf{a}_1^T\mathbf{z} \\ \mathbf{a}_2^T\mathbf{z} \\ \vdots \\ \mathbf{a}_n^T\mathbf{z} \end{pmatrix},$$

which requires solution of a small $n \times n$ system, \tilde{W} .

• Once we have **x**,

$$\mathbf{y} = A\mathbf{x} = \sum_{j=1}^{n} \mathbf{a}_j x_j \approx \mathbf{b} := W^{-1}\mathbf{z}.$$

- So, weighted inner-product allows us to approximate b, the solution to Wb = z, without knowing b !
- Approximate solution $\mathbf{y} \in \mathcal{R}(A) = \operatorname{span}\{\mathbf{a}_1 \, \mathbf{a}_2 \, \cdots \, \mathbf{a}_n\}:$

$$\mathbf{y} = A \left(A^T W A \right)^{-1} A^T \mathbf{z}$$

• **y** is the **projection** of **b** onto $\mathcal{R}(A)$,

- the closest approximation or best fit in $\mathcal{R}(A)$ in the W-norm.

• **r** is *W*-orthogonal to $\mathcal{R}(A)$. $\leftarrow \mathbf{r}^{\mathsf{T}} \mathbf{W} \mathbf{A} = \mathbf{0}$.

- Very often can have accurate approximations with $n \ll m$.
- In particular, if $\kappa := \operatorname{cond}(W)$, and

$$\mathcal{R}(A) = \operatorname{span}\{W\mathbf{b}, W^{2}\mathbf{b}, \cdots, W^{k}\mathbf{b}\}$$
$$= \operatorname{span}\{\mathbf{z}, W\mathbf{z}, \cdots, W^{k-1}\mathbf{z}\},$$

then can have an accurate answer with $k \approx \sqrt{\kappa}$.

- Can keep increasing $\mathcal{R}(A)$ with additional matrix-vector products.
- This method corresponds to *conjugate gradient iteration* applied to the SPD system $W\mathbf{b} = \mathbf{z}$.

Back to Standard Least Squares

- Suppose we have observational data, { b_i } at some independent times { t_i } (red circles).
- The t_i s do not need to be sorted and can in fact be repeated.
- We wish to fit a smooth model (blue curve) to the data so we can compactly describe (and perhaps integrate or differentiate) the functional relationship between b(t) and t.

A common model is of the form:

$$y(t) = \phi_1(t)x_1 + \phi_2(t)x_2 + \ldots + \phi_n(t)x_n$$

The $\phi_j(t)$ s are the basis functions and x_j s the unknown basis coefficients.

The system is *linear* with respect to the unknowns, hence, these are *linear least squares* problems.

Example

- To proceed, we assume b_i represents a function at time points t_i , which we are trying to model.
- We select basis functions, e.g., φ_j(t) = t^{j-1} would span the space of polynomials of up to degree n 1.
 (This might not be the best basis for the polynomials...)
- We then set $\{\underline{a}_j\}_i = \phi_j(t_i)$ for each column j = 1, ..., n.
- We then solve the linear least squares problem: $\min ||\underline{b} A\underline{x}||^2$
- Once we have the x_j s, we can reconstruct the smooth function:

$$y(t) = \sum_{j=1}^{n} \phi_j(t) x_j$$

Matlab Example

% Linear Least Squares Demo

degree=3; m=20; n=degree+1;

```
t=3*(rand(m,1)-0.5);
b = t.^3 - t; b=b+0.2*rand(m,1); %% Expect: x =~ [0-1 01]
```

plot(t,b,'ro'), pause

%%% DEFINE a_ij = phi_j(t_i)

A=zeros(m,n); for j=1:n; A(:,j) = t.^(j-1); end;

A0=A; b0=b; % Save A & b.

%%%% SOLVE LEAST SQUARES PROBLEM via Normal Equations &&&&

 $x = (A'^*A) \setminus A'^*b$

plot(t,b0,'ro',t,A0*x,'bo',t,1*(b0-A0*x),'kx'), pause plot(t,A0*x,'bo'), pause

%% CONSTRUCT SMOOTH APPROXIMATION

tt=(0:100)'/100; tt=min(t) + (max(t)-min(t))*tt; S=zeros(101,n); for k=1:n; S(:,k) = tt.^(k-1); end; s=S*x;

plot(t,b0,'ro',tt,s,'b-') title('Least Squares Model Fitting to Cubic') xlabel('Independent Variable, t') ylabel('Dependent Variable b_i and y(t)')

Python Least Squares Example

```
# % Linear Least Squares Demo
import numpy as np
import scipy as sp
import matplotlib
matplotlib.use('MacOSX')
import matplotlib.pyplot as plt
##import pylab
degree=3; m=20; n=degree+1;
t=3*(np.random.rand(m,1)-0.5);
b = t * * 3 - t;
b = b+0.2 \times np.random.rand(m,1); ##Expect: x =~ [0 -1 0 1]
plt.plot(t,b,'ro')
plt.show()
                                                       # %%%% SOLVE LEAST SQUARES PROBLEM via Normal Equations
                                                       x = np.linalq.solve(np.dot(A.T, A), np.dot(A.T,b))
# %%% DEFINE a_ij = phi_j(t_i)
                                                       plt.figure()
A=np.zeros((m,n))
                                                       plt.plot(t,b0,'ro')
for j in range(n):
                                                       plt.plot(t,np.dot(A0,x), 'bo')
    A[:,j] = (t**(j)).T;
                                                       plt.plot(t,b0-np.dot(A0,x),'kx')
A = 0 A
                                                       plt.show()
b0=b; # Save A & b.
                                                       plt.figure()
                                                       plt.plot(t,np.dot(A0,x), 'bo')
                                                       plt.show()
                                                       # %% CONSTRUCT SMOOTH APPROXIMATION
                                                       tt=np.linspace(0,100,101)/100
                                                       tt=min(t) + (max(t)-min(t))*tt;
                                                       S=np.zeros((101,n))
                                                       for k in range(n):
                                                           S[:,k] = tt**(k)
                                                       s = np.dot(S, x)
                                                       plt.figure()
                                                       plt.plot(t,b0,'ro')
                                                       plt.plot(tt,s,'b-')
                                                       plt.title('Least Squares Model Fitting to Cubic')
                                                       plt.xlabel('Independent Variable, t')
                                                       plt.ylabel('Dependent Variable b i and y(t)')
                                                       plt.show()
```

Note on the text examples

- □ Note, the text uses similar examples.
- The notation in the examples is a bit different from the rest of the derivation... so be sure to pay attention.

Least Squares Data Fitting

Data Fitting

• Given *m* data points (t_i, y_i) , find *n*-vector *x* of parameters that gives "best fit" to model function f(t, x),

$$\min_{\boldsymbol{x}} \sum_{i=1}^{m} (y_i - f(t_i, \boldsymbol{x}))^2$$

• Problem is *linear* if function f is linear in components of x,

$$f(t, \mathbf{x}) = x_1 \phi_1(t) + x_2 \phi_2(t) + \dots + x_n \phi_n(t)$$

where functions ϕ_j depend only on t

• Problem can be written in matrix form as $Ax \cong b$, with $a_{ij} = \phi_j(t_i)$ and $b_i = y_i$

Least Squares Data Fitting

Data Fitting

Polynomial fitting

$$f(t, \mathbf{x}) = x_1 + x_2 t + x_3 t^2 + \dots + x_n t^{n-1}$$

is linear, since polynomial linear in coefficients, though nonlinear in independent variable t

Fitting sum of exponentials

$$f(t, \boldsymbol{x}) = x_1 e^{x_2 t} + \dots + x_{n-1} e^{x_n t}$$

is example of nonlinear problem

 For now, we will consider only linear least squares problems

Least Squares Data Fitting

Example: Data Fitting

 Fitting quadratic polynomial to five data points gives linear least squares problem

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ 1 & t_3 & t_3^2 \\ 1 & t_4 & t_4^2 \\ 1 & t_5 & t_5^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cong \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \boldsymbol{b}$$

 Matrix whose columns (or rows) are successive powers of independent variable is called Vandermonde matrix

Least Squares Data Fitting

Example, continued

For data

overdetermined 5×3 linear system is

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cong \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 2.0 \end{bmatrix} = \boldsymbol{b}$$

Solution, which we will see later how to compute, is

$$\boldsymbol{x} = \begin{bmatrix} 0.086 & 0.40 & 1.4 \end{bmatrix}^T$$

so approximating polynomial is

$$p(t) = 0.086 + 0.4t + 1.4t^2$$

Michael T. Heath Scientific Computing

8 / 61

Least Squares Data Fitting

Example, continued

• Resulting curve and original data points are shown in graph

Existence and Uniqueness Orthogonality Conditioning

Existence and Uniqueness

- Linear least squares problem $Ax \cong b$ always has solution
- Solution is *unique* if, and only if, columns of A are *linearly independent*, i.e., rank(A) = n, where A is $m \times n$
- If rank(A) < n, then A is *rank-deficient*, and solution of linear least squares problem is not unique
- For now, we assume \boldsymbol{A} has full column rank n

Note: The minimizer, y, is unique.

Existence and Uniqueness Orthogonality Conditioning

Normal Equations

To minimize squared Euclidean norm of residual vector

$$egin{array}{rll} |m{r}\|_2^2 &=& m{r}^Tm{r} = (m{b} - m{A}m{x})^T(m{b} - m{A}m{x}) \ &=& m{b}^Tm{b} - 2m{x}^Tm{A}^Tm{b} + m{x}^Tm{A}^Tm{A}m{x} \end{array}$$

take derivative with respect to x and set it to 0,

$$2\boldsymbol{A}^T\boldsymbol{A}\boldsymbol{x} - 2\boldsymbol{A}^T\boldsymbol{b} = \boldsymbol{0}$$

which reduces to $n \times n$ linear system of *normal equations*

$$\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{A}^T \boldsymbol{b}$$

Orthogonality

- Vectors v_1 and v_2 are *orthogonal* if their inner product is zero, $v_1^T v_2 = 0$
- Space spanned by columns of $m \times n$ matrix A, span $(A) = \{Ax : x \in \mathbb{R}^n\}$, is of dimension at most n
- If m > n, b generally does not lie in span(A), so there is no exact solution to Ax = b
- Vector y = Ax in span(A) closest to b in 2-norm occurs when residual r = b - Ax is *orthogonal* to span(A),

$$\mathbf{0} = \mathbf{A}^T \mathbf{r} = \mathbf{A}^T (\mathbf{b} - \mathbf{A}\mathbf{x})$$

again giving system of *normal equations*

$$\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{A}^T \boldsymbol{b}$$

Existence and Uniqueness Orthogonality Conditioning

Orthogonality, continued

 Geometric relationships among b, r, and span(A) are shown in diagram

Existence and Uniqueness Orthogonality Conditioning

Orthogonal Projectors

- Matrix P is orthogonal projector if it is idempotent $(P^2 = P)$ and symmetric $(P^T = P)$
- Orthogonal projector onto orthogonal complement span $(P)^{\perp}$ is given by $P_{\perp} = I P$
- For any vector v,

$$oldsymbol{v} = (oldsymbol{P} + (oldsymbol{I} - oldsymbol{P})) \ oldsymbol{v} = oldsymbol{P} oldsymbol{v} + oldsymbol{P}_{oldsymbol{\perp}} oldsymbol{v}$$

• For least squares problem $Ax \cong b$, if rank(A) = n, then

$$\boldsymbol{P} = \boldsymbol{A}(\boldsymbol{A}^T\boldsymbol{A})^{-1}\boldsymbol{A}^T$$

is orthogonal projector onto $\mbox{span}({\boldsymbol{A}}),$ and

$$b = Pb + P_{\perp}b = Ax + (b - Ax) = y + r$$

Existence and Uniqueness Orthogonality Conditioning

Pseudoinverse and Condition Number

- Nonsquare $m \times n$ matrix \boldsymbol{A} has no inverse in usual sense
- If rank(A) = n, *pseudoinverse* is defined by

$$\boldsymbol{A}^{+} = (\boldsymbol{A}^{T}\boldsymbol{A})^{-1}\boldsymbol{A}^{T}$$

and condition number by

 $\operatorname{cond}(\boldsymbol{A}) = \|\boldsymbol{A}\|_2 \cdot \|\boldsymbol{A}^+\|_2$

- By convention, $\operatorname{cond}(A) = \infty$ if $\operatorname{rank}(A) < n$
- Just as condition number of square matrix measures closeness to singularity, condition number of rectangular matrix measures closeness to rank deficiency
- Least squares solution of $Ax \cong b$ is given by $x = A^+ b$

Existence and Uniqueness Orthogonality Conditioning

Sensitivity and Conditioning

- Sensitivity of least squares solution to $Ax \cong b$ depends on b as well as A
- Define angle heta between $m{b}$ and $m{y} = m{A}m{x}$ by

$$\cos(\theta) = \frac{\|m{y}\|_2}{\|m{b}\|_2} = \frac{\|m{A}m{x}\|_2}{\|m{b}\|_2}$$

• Bound on perturbation Δx in solution x due to perturbation Δb in b is given by

$$\frac{\|\Delta \boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2} \leq \operatorname{cond}(\boldsymbol{A}) \frac{1}{\cos(\theta)} \frac{\|\Delta \boldsymbol{b}\|_2}{\|\boldsymbol{b}\|_2}$$

Existence and Uniqueness Orthogonality Conditioning

Sensitivity and Conditioning, contnued

• Similarly, for perturbation E in matrix A,

$$\frac{\|\Delta \boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2} \lessapprox \left([\operatorname{cond}(\boldsymbol{A})]^2 \tan(\theta) + \operatorname{cond}(\boldsymbol{A}) \right) \frac{\|\boldsymbol{E}\|_2}{\|\boldsymbol{A}\|_2}$$

 Condition number of least squares solution is about cond(A) if residual is small, but can be squared or arbitrarily worse for large residual

Normal Equations Orthogonal Methods SVD

Normal Equations Method

• If $m \times n$ matrix A has rank n, then symmetric $n \times n$ matrix $A^T A$ is positive definite, so its Cholesky factorization

$$\boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{L} \boldsymbol{L}^T$$

can be used to obtain solution x to system of normal equations

$$\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{A}^T \boldsymbol{b}$$

which has same solution as linear least squares problem $Ax\cong b$

Normal equations method involves transformations

Spoiler: Normal Equations *not* Recommended

- So far, our examples have used normal equations approach, as do the next examples.
- After the introduction, most of this chapter is devoted to better methods in which columns of A are first *orthogonalized*.
- Orthogonalization methods of choice:
 - Householder transformations (very stable)
 - Givens rotations
 - Gram-Schmidt
 - Modified Gram-Schmidt
- (stable; cheap if A is sparse)(better than normal eqns, but not great)(better than "classical" Gram-Schmidt)

Normal Equations Orthogonal Methods SVD

 \cap

Example: Normal Equations Method

 For polynomial data-fitting example given previously, normal equations method gives

$$\boldsymbol{A}^{T}\boldsymbol{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\ 1.0 & 0.25 & 0.0 & 0.25 & 1.0 \end{bmatrix} \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix}$$
$$= \begin{bmatrix} 5.0 & 0.0 & 2.5 \\ 0.0 & 2.5 & 0.0 \\ 2.5 & 0.0 & 2.125 \end{bmatrix},$$
$$\boldsymbol{A}^{T}\boldsymbol{b} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\ 1.0 & 0.25 & 0.0 & 0.25 & 1.0 \end{bmatrix} \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 2.0 \end{bmatrix} = \begin{bmatrix} 4.0 \\ 1.0 \\ 3.25 \end{bmatrix}$$
Michael Theorem

Normal Equations Orthogonal Methods SVD

Example, continued

• Cholesky factorization of symmetric positive definite matrix $A^T A$ gives

$$\begin{aligned} \boldsymbol{A}^{T}\boldsymbol{A} &= \begin{bmatrix} 5.0 & 0.0 & 2.5 \\ 0.0 & 2.5 & 0.0 \\ 2.5 & 0.0 & 2.125 \end{bmatrix} \\ &= \begin{bmatrix} 2.236 & 0 & 0 \\ 0 & 1.581 & 0 \\ 1.118 & 0 & 0.935 \end{bmatrix} \begin{bmatrix} 2.236 & 0 & 1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & 0.935 \end{bmatrix} = \boldsymbol{L}\boldsymbol{L}^{T} \end{aligned}$$

- Solving lower triangular system $Lz = A^T b$ by forward-substitution gives $z = \begin{bmatrix} 1.789 & 0.632 & 1.336 \end{bmatrix}^T$
- Solving upper triangular system $L^T x = z$ by back-substitution gives $x = \begin{bmatrix} 0.086 & 0.400 & 1.429 \end{bmatrix}^T$

Normal Equations Orthogonal Methods SVD

Shortcomings of Normal Equations

- Information can be lost in forming $A^T A$ and $A^T b$
- For example, take

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{bmatrix}$$

where ϵ is positive number smaller than $\sqrt{\epsilon_{\text{mach}}}$

• Then in floating-point arithmetic

$$\boldsymbol{A}^{T}\boldsymbol{A} = \begin{bmatrix} 1+\epsilon^{2} & 1\\ 1 & 1+\epsilon^{2} \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix}$$

which is singular

Sensitivity of solution is also worsened, since

$$\operatorname{cond}(\boldsymbol{A}^T\boldsymbol{A}) = [\operatorname{cond}(\boldsymbol{A})]^2$$

21/61

Avoid normal equations:

 $\Box A^{T}A \mathbf{x} = A^{T}\mathbf{b}$

Instead, orthogonalize columns of A

 $\Box Ax = QRx \approx b$

Columns of **Q** are orthonormal; **R** is upper triangular
 Since span(A)=span(Q), we get the same miminizer, **y**.

Projection, QR Factorization, Gram-Schmidt

• Recall our linear least squares problem:

$$\mathbf{y} = A\mathbf{x} \approx \mathbf{b},$$

which is equivalent to minimization / orthogonal projection:

$$\mathbf{r} := \mathbf{b} - A \mathbf{x} \perp \mathcal{R}(A)$$

$$||\mathbf{r}||_2 = ||\mathbf{b} - \mathbf{y}||_2 \leq ||\mathbf{b} - \mathbf{v}||_2 \quad \forall \mathbf{v} \in \mathcal{R}(A).$$

• This problem has solutions

$$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$$
$$\mathbf{y} = A (A^T A)^{-1} A^T \mathbf{b} = P \mathbf{b},$$

where $P := A (A^T A)^{-1} A^T$ is the orthogonal projector onto $\mathcal{R}(A)$.

Observations

$$(A^{T}A) \mathbf{x} = A^{T}\mathbf{b} = \begin{pmatrix} \mathbf{a}_{1}^{T}\mathbf{b} \\ \mathbf{a}_{2}^{T}\mathbf{b} \\ \vdots \\ \mathbf{a}_{n}^{T}\mathbf{b} \end{pmatrix}$$

$$(A^T A) = \begin{pmatrix} \mathbf{a}_1^T \mathbf{a}_1 & \mathbf{a}_1^T \mathbf{a}_2 & \cdots & \mathbf{a}_1^T \mathbf{a}_n \\ \mathbf{a}_2^T \mathbf{a}_1 & \mathbf{a}_2^T \mathbf{a}_2 & \cdots & \mathbf{a}_2^T \mathbf{a}_n \\ \vdots & & & \vdots \\ \mathbf{a}_n^T \mathbf{a}_1 & \mathbf{a}_n^T \mathbf{a}_2 & \cdots & \mathbf{a}_n^T \mathbf{a}_n \end{pmatrix}.$$

Orthogonal Bases

• If the columns of A were *orthogonal*, such that $a_{ij} = \mathbf{a}_i^T \mathbf{a}_j = 0$ for $i \neq j$, then $A^T A$ is a diagonal matrix,

$$(A^T A) = \begin{pmatrix} \mathbf{a}_1^T \mathbf{a}_1 & & \\ & \mathbf{a}_2^T \mathbf{a}_2 & \\ & & \ddots & \\ & & & \ddots & \\ & & & \mathbf{a}_n^T \mathbf{a}_n \end{pmatrix},$$

and the system is easily solved,

$$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b} = \begin{pmatrix} \frac{1}{\mathbf{a}_1^T \mathbf{a}_1} & & \\ & \frac{1}{\mathbf{a}_2^T \mathbf{a}_2} & & \\ & & \ddots & \\ & & & \frac{1}{\mathbf{a}_n^T \mathbf{a}_n} \end{pmatrix} \begin{pmatrix} \mathbf{a}_1^T \mathbf{b} \\ \mathbf{a}_2^T \mathbf{b} \\ \vdots \\ \mathbf{a}_n^T \mathbf{b} \end{pmatrix}.$$

• In this case, we can write the projection in closed form:

$$\mathbf{y} = \sum_{j=1}^{n} x_j \, \mathbf{a}_j = \sum_{j=1}^{n} \frac{\mathbf{a}_j^T \mathbf{b}}{\mathbf{a}_j^T \mathbf{a}_j} \, \mathbf{a}_j \,. \tag{1}$$

• For *orthogonal* bases, (1) is the projection of **b** onto span{ $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ }.

Orthonormal Bases

• If the columns are orthogonal and *normalized* such that $||\mathbf{a}_j|| = 1$, we then have $\mathbf{a}_j^T \mathbf{a}_j = 1$, or more generally

$$\mathbf{a}_{i}^{T}\mathbf{a}_{j} = \delta_{ij}, \text{ with } \delta_{ij} := \begin{cases} 1, \ i = j \\ 0, \ i \neq j \end{cases}$$
 the Kronecker delta,

• In this case, $A^T A = I$ and the orthogonal projection is given by

$$\mathbf{y} = A A^T \mathbf{b} = \sum_{j=1}^n \mathbf{a}_j (\mathbf{a}_j^T \mathbf{b}).$$

Example: Suppose our model fit is based on sine functions, sampled uniformly on $[0, \pi]$:

$$\phi_j(t) = \sqrt{2h} \sin j t_i, \quad t_i = i \cdot h, \quad i = 1, \dots, m; \quad h := \frac{\pi}{m+1}.$$

In this case,

$$A = (\phi_1(t_i) \ \phi_2(t_i) \ \cdots \ \phi_n(t_i)),$$
$$A^T A = I.$$

QR Factorization

- Generally, we don't *a priori* have orthonormal bases.
- We can construct them, however. The process is referred to as QR factorization.
- We seek factors Q and R such that QR = A with Q orthogonal (or, *unitary*, in the complex case).
- There are two cases of interest:

• Note that

$$A = Q \begin{bmatrix} R \\ O \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R \\ O \end{bmatrix} = Q_1 R.$$

- The columns of Q_1 form an orthonormal basis for $\mathcal{R}(A)$.
- The columns of Q_2 form an orthonormal basis for $\mathcal{R}(A)^{\perp}$.

QR Factorization: Gram-Schmidt

- We'll look at three approaches to QR:
 - Gram-Schmidt Orthogonalization,
 - Householder Transformations, and
 - Givens Rotations
- We start with Gram-Schmidt which is most intuitive.
- We are interested in generating orthogonal subspaces that match the nested column spaces of A,

$$span\{ \mathbf{a}_{1} \} = span\{ \mathbf{q}_{1} \}$$
$$span\{ \mathbf{a}_{1}, \mathbf{a}_{2} \} = span\{ \mathbf{q}_{1}, \mathbf{q}_{2} \}$$
$$span\{ \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3} \} = span\{ \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3} \}$$
$$span\{ \mathbf{a}_{1}, \mathbf{a}_{2}, \dots, \mathbf{a}_{n} \} = span\{ \mathbf{q}_{1}, \mathbf{q}_{2}, \dots, \mathbf{q}_{n} \}$$

QR Factorization: Gram-Schmidt

• It's clear that the conditions

 $span{ a_1 } = span{ q_1 }$ $span{ a_1, a_2 } = span{ q_1, q_2 }$ $span{ a_1, a_2, a_3 } = span{ q_1, q_2, q_3 }$ $span{ a_1, a_2, ..., a_n } = span{ q_1, q_2, ..., q_n }$

are equivalent to the equations

$$\mathbf{a}_{1} = \mathbf{q}_{1} r_{11}$$

$$\mathbf{a}_{2} = \mathbf{q}_{1} r_{12} + \mathbf{q}_{2} r_{22}$$

$$\mathbf{a}_{3} = \mathbf{q}_{1} r_{13} + \mathbf{q}_{2} r_{23} + \mathbf{q}_{3} r_{33}$$

$$\vdots = \vdots + \cdots$$

$$\mathbf{a}_{n} = \mathbf{q}_{1} r_{1n} + \mathbf{q}_{2} r_{2n} + \cdots + \mathbf{q}_{n} r_{nn}$$
i.e., $A = QR$

(For now, we drop the distinction between Q and Q_1 , and focus only on the reduced QR problem.)

Gram-Schmidt Orthogonalization

• The preceding relationship suggests the first algorithm.

Let
$$Q_{j-1} := [\mathbf{q}_1 \ \mathbf{q}_2 \ \dots \mathbf{q}_{j-1}], \ P_{j-1} := Q_j \ Q_{j-1}^T, \ P_{\perp,j-1} := I - P_{j-1}.$$

for $j = 2, \dots, n-1$
 $\mathbf{v}_j = \mathbf{a}_j - P_{j-1} \ \mathbf{a}_j = (I - P_{j-1}) \ \mathbf{a}_j = P_{\perp,j-1} \ \mathbf{a}_j$
 $\mathbf{q}_j = \frac{\mathbf{v}_j}{||\mathbf{v}_j||} = \frac{P_{\perp,j-1} \mathbf{a}_j}{||P_{\perp,j-1} \mathbf{a}_j||}$
end

- This is *Gram-Schmidt orthogonalization*.
- Each new vector \mathbf{q}_j starts with \mathbf{a}_j and subtracts off the projection onto $\mathcal{R}(Q_{j-1})$, followed by normalization.

Classical Gram-Schmidt Orthogonalization

$$P_{2}\underline{a}_{3} = Q_{2}Q_{2}^{T}\underline{a}_{3}$$

$$= \underline{q}_{1}\frac{\underline{q}_{1}^{T}\underline{a}_{3}}{\underline{q}_{1}^{T}\underline{q}_{1}} + \underline{q}_{2}\frac{\underline{q}_{2}^{T}\underline{a}_{3}}{\underline{q}_{2}^{T}\underline{q}_{2}}$$

$$= \underline{q}_{1}\underline{q}_{1}^{T}\underline{a}_{3} + \underline{q}_{2}\underline{q}_{2}^{T}\underline{a}_{3}$$

In general, if Q_k is an orthogonal matrix, then $P_k = Q_k Q_k^T$ is an orthogonal projector onto $R(Q_k)$

Gram-Schmidt: Classical vs. Modified

- We take a closer look at the projection step, $\mathbf{v}_j = \mathbf{a}_j P_{j-1} \mathbf{a}_j$.
- The classical (unstable) GS projection is executed as

$$\mathbf{v}_{j} = \mathbf{a}_{j}$$

for $k = 1, \dots, j - 1,$
$$\mathbf{v}_{j} = \mathbf{v}_{j} - \mathbf{q}_{k} \left(\mathbf{q}_{k}^{T} \mathbf{a}_{j}\right)$$

end

• The modified GS projection is executed as

$$\mathbf{v}_{j} = \mathbf{a}_{j}$$

for $k = 1, \dots, j - 1,$
$$\mathbf{v}_{j} = \mathbf{v}_{j} - \mathbf{q}_{k} \left(\mathbf{q}_{k}^{T} \mathbf{v}_{j}\right)$$

end

Mathematical Difference Between CGS and MGS

- Let \tilde{P}_k , := $\mathbf{q}_k \mathbf{q}_k^T$ (This is an $m \times m$ matrix of what rank?)
- The CGS projection step amounts to

$$\mathbf{v}_j = \mathbf{a}_j - \tilde{P}_1 \mathbf{a}_j - \tilde{P}_2 \mathbf{a}_j - \dots - \tilde{P}_{j-1} \mathbf{a}_j$$
$$= \mathbf{a}_j - \sum_{k=1}^{j-1} \tilde{P}_k \mathbf{a}_j.$$

• The MGS projection step is equivalent to

$$\mathbf{v}_{j} = \left(I - \tilde{P}_{j-1}\right) \left(I - \tilde{P}_{j-2}\right) \cdots \left(I - \tilde{P}_{1}\right) \mathbf{a}_{j}$$
$$= \prod_{k=1}^{j-1} \left(I - \tilde{P}_{k}\right) \mathbf{a}_{j}$$

Note: $\tilde{P}_k \tilde{P}_j = 0$, if $k \neq j$.

Mathematical Difference Between CGS and MGS

- Lack of associativity in floating point arithmetic drives the difference between CGS and MGS.
- Conceptually, MGS projects the remaining residual rather than the original \mathbf{a}_j .
- As we shall see, neither GS nor MGS are as robust as Householder transformations.
- Both, however, can be cleaned up with a second-pass through the orthogonalization process. (Just set A = Q and repeat, once.)

MGS is an example of the idea that "small corrections are preferred to large ones:

Better to update \mathbf{v} by subtracting off the projection of \mathbf{v} , rather than the projection of \mathbf{a} .

Normal Equations Orthogonal Methods SVD

Gram-Schmidt Orthogonalization

- Given vectors a₁ and a₂, we seek orthonormal vectors q₁ and q₂ having same span
- This can be accomplished by subtracting from second vector its projection onto first vector and normalizing both resulting vectors, as shown in diagram

Normal Equations Orthogonal Methods SVD

Gram-Schmidt Orthogonalization

 Process can be extended to any number of vectors a₁,..., a_k, orthogonalizing each successive vector against all preceding ones, giving *classical Gram-Schmidt* procedure

for k = 1 to n $q_k = a_k$ for j = 1 to k - 1 $r_{jk} = q_j^T a_k$ $q_k = q_k - r_{jk}q_j$ end $r_{kk} = ||q_k||_2$ $q_k = q_k/r_{kk}$ end

 $r_{jk} = \boldsymbol{q}_j^T \boldsymbol{a}_k$ $\boldsymbol{\leftarrow}$ Coefficient involves original \boldsymbol{a}_k

• Resulting q_k and r_{jk} form reduced QR factorization of A

Normal Equations Orthogonal Methods SVD

Modified Gram-Schmidt

- Classical Gram-Schmidt procedure often suffers loss of orthogonality in finite-precision
- Also, separate storage is required for A, Q, and R, since original a_k are needed in inner loop, so q_k cannot overwrite columns of A
- Both deficiencies are improved by *modified Gram-Schmidt* procedure, with each vector orthogonalized in turn against all *subsequent* vectors, so q_k can overwrite a_k

Normal Equations Orthogonal Methods SVD

Modified Gram-Schmidt QR Factorization

Modified Gram-Schmidt algorithm

for
$$k = 1$$
 to n
 $r_{kk} = ||a_k||_2$
 $q_k = a_k/r_{kk}$
for $j = k + 1$ to n
 $r_{kj} = q_k^T a_j$
 $a_j = a_j - r_{kj}q_k$
end
end

 \leftarrow Coefficient involves modified \mathbf{a}_{i}

Matlab Demo: house.m

Gram-Schmidt Examples

□ Here we consider a matrix that is not well-conditioned.

Classical & Modified GS: Notes

```
%% Test several QR schemes
n=100; format compact; format shorte
A = rand(n,n); [Q,R]=qr(A);
for i=1:n; R(i,i)=R(i,i)/(1.2<sup>i</sup>); end;
A=Q*R; [Q,R]=qr(A);
for j=1:n-1; for i=j+2:n; A(i,j)=0; end;end; % Upper H
v=A; q=Q; a=A; % Classical GS
for j=1:n;
   for k=1:(j-1);
     v(:,j)=v(:,j)-q(:,k)*(q(:,k)'*a(:,j)); end;
   q(:,j)=v(:,j)/norm(v(:,j));
end;
qc=q;
v=A; q=Q; a=A; % Modified GS
for j=1:n;
   for k=1:(j-1);
     v(:,j)=v(:,j)-q(:,k)*(q(:,k)'*v(:,j)); end;
   q(:,j)=v(:,j)/norm(v(:,j));
end;
qm=q;
```

Classical & Modified GS: Notes

```
v=A; g=Q; a=A; % Classical GS, text
for k=1:n;
   q(:,k)=a(:,k);
   for j=1:k-1; r(j,k)=q(:,j)'*a(:,k);
       q(:,k)=q(:,k)-r(j,k)*q(:,j); end;
   r(k,k)=norm(q(:,k));
   q(:,k) = q(:,k) / r(k,k);
end;
qct=q;
v=A; q=Q; a=A; % Modified GS, text
for k=1:n:
   r(k,k)=norm(a(:,k));
   q(:,k)=a(:,k) / r(k,k);
   for j=k+1:n; r(k,j)=q(:,k)'*a(:,j);
      a(:,i)=a(:,i)-r(k,i)*q(:,k); end;
end;
qmt=q;
```

Householder Transformations: Notes

```
a=A; % Householder, per textbook
I=eye(n); QH=I;
for k=1:n;
   v=a(:,k); v(1:k-1)=0;
   alphak=-sign(a(k,k))*norm(v);
   v(k) = v(k) - alphak;
   betak=v'*v;
   for j=k:n; gammaj=v'*a(:,j);
      a(:,j)=a(:,j)-(2*gammaj/betak)*v; end;
   OH=OH-(2/betak)*v*(v'*OH);
end;
QH=QH'; qht=QH;
nq =norm(Q'*Q-eye(n));
nc =norm(qc'*qc-eye(n));
nm =norm(qm'*qm-eye(n));
nct=norm(qct'*qct-eye(n));
nmt=norm(qmt'*qmt-eye(n));
nht=norm(qht'*qht-eye(n));
[nc nct nm nmt nht ng]
```

5.9707e-05	5.9707e-05	6.4358e-10	6.4358e-10	2.2520e-15	2.1863e-15

ans =

Normal Equations Orthogonal Methods SVD

Orthogonal Transformations

- We seek alternative method that avoids numerical difficulties of normal equations
- We need numerically robust transformation that produces easier problem without changing solution
- What kind of transformation leaves least squares solution unchanged?
- Square matrix Q is orthogonal if $Q^T Q = I$
- Multiplication of vector by orthogonal matrix preserves Euclidean norm

$$\| \boldsymbol{Q} \boldsymbol{v} \|_{2}^{2} = (\boldsymbol{Q} \boldsymbol{v})^{T} \boldsymbol{Q} \boldsymbol{v} = \boldsymbol{v}^{T} \boldsymbol{Q}^{T} \boldsymbol{Q} \boldsymbol{v} = \boldsymbol{v}^{T} \boldsymbol{v} = \| \boldsymbol{v} \|_{2}^{2}$$

• Thus, multiplying both sides of least squares problem by orthogonal matrix does not change its solution

Normal Equations Orthogonal Methods SVD

Triangular Least Squares Problems

- As with square linear systems, suitable target in simplifying least squares problems is triangular form
- Upper triangular overdetermined (m > n) least squares problem has form

$$egin{bmatrix} m{R} \ m{O} \end{bmatrix} m{x} \cong egin{bmatrix} m{b}_1 \ m{b}_2 \end{bmatrix}$$

where ${\boldsymbol{R}}$ is $n\times n$ upper triangular and ${\boldsymbol{b}}$ is partitioned similarly

• Residual is

$$\|m{r}\|_2^2 = \|m{b}_1 - m{R}m{x}\|_2^2 + \|m{b}_2\|_2^2$$

Normal Equations Orthogonal Methods SVD

Triangular Least Squares Problems, continued

• We have no control over second term, $\|b_2\|_2^2$, but first term becomes zero if x satisfies $n \times n$ triangular system

$$Rx = b_1$$

which can be solved by back-substitution

Resulting x is least squares solution, and minimum sum of squares is

$$\|m{r}\|_2^2 = \|m{b}_2\|_2^2$$

 So our strategy is to transform general least squares problem to triangular form using orthogonal transformation so that least squares solution is preserved

Normal Equations Orthogonal Methods SVD

QR Factorization

• Given $m \times n$ matrix A, with m > n, we seek $m \times m$ orthogonal matrix Q such that

$$oldsymbol{A} = oldsymbol{Q} egin{bmatrix} oldsymbol{R} \ oldsymbol{O} \end{bmatrix}$$

where $\boldsymbol{R} \text{ is } n \times n$ and upper triangular

• Linear least squares problem $Ax \cong b$ is then transformed into triangular least squares problem

$$oldsymbol{Q}^Toldsymbol{A}oldsymbol{x} = egin{bmatrix} oldsymbol{R} \ oldsymbol{O} \end{bmatrix} oldsymbol{x} \cong egin{bmatrix} oldsymbol{c}_1 \ oldsymbol{c}_2 \end{bmatrix} = oldsymbol{Q}^Toldsymbol{b}$$

which has same solution, since

$$\|m{r}\|_2^2 = \|m{b} - m{A}m{x}\|_2^2 = \|m{b} - m{Q}igg[m{R}\Oigg]m{x}\|_2^2 = \|m{Q}^Tm{b} - igg[m{R}\Oigg]m{x}\|_2^2$$

Normal Equations Orthogonal Methods SVD

Orthogonal Bases

• If we partition $m \times m$ orthogonal matrix $Q = [Q_1 \ Q_2]$, where Q_1 is $m \times n$, then

$$oldsymbol{A} = oldsymbol{Q} egin{bmatrix} oldsymbol{R} \ oldsymbol{O} \end{bmatrix} = egin{bmatrix} oldsymbol{R}_1 oldsymbol{Q}_2 \end{bmatrix} egin{bmatrix} oldsymbol{R} \ oldsymbol{O} \end{bmatrix} = oldsymbol{Q}_1 oldsymbol{R}$$

is called *reduced* QR factorization of A

- Columns of Q_1 are orthonormal basis for span(A), and columns of Q_2 are orthonormal basis for span(A)^{\perp}
- $Q_1 Q_1^T$ is orthogonal projector onto span(A)
- Solution to least squares problem $Ax \cong b$ is given by solution to square system

$$\boldsymbol{Q}_1^T \boldsymbol{A} \boldsymbol{x} = \left| \boldsymbol{R} \boldsymbol{x} = \boldsymbol{c}_1 \right| = \boldsymbol{Q}_1^T \boldsymbol{b}$$

QR for Solving Least Squares

• Start with $A\mathbf{x} \approx \mathbf{b}$

$$Q\begin{bmatrix} R\\ O\end{bmatrix}\mathbf{x} \approx \mathbf{b}$$
$$Q^{T}Q\begin{bmatrix} R\\ O\end{bmatrix}\mathbf{x} = \begin{bmatrix} R\\ O\end{bmatrix}\mathbf{x} \approx Q^{T}\mathbf{b} = [Q_{1}Q_{2}]\mathbf{b} = \begin{bmatrix} \mathbf{c}_{1}\\ \mathbf{c}_{2}\end{bmatrix}.$$

• Define the residual, $\mathbf{r} := \mathbf{b} - \mathbf{y} = \mathbf{b} - A\mathbf{x}$

$$||\mathbf{r}|| = ||\mathbf{b} - A\mathbf{x}||$$

= $||Q^T (\mathbf{b} - A\mathbf{x})||$
= $\left| \left| \begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{pmatrix} - \begin{pmatrix} R\mathbf{x} \\ O \end{pmatrix} \right|$
= $\left| \begin{vmatrix} (\mathbf{c}_1 - R\mathbf{x}) \\ \mathbf{c}_2 \end{vmatrix} \right|$

$$||\mathbf{r}||^2 = ||\mathbf{c}_1 - R\mathbf{x}||^2 + ||\mathbf{c}_2||^2$$

• Norm of residual is minimized when $R\mathbf{x} = \mathbf{c}_1 = Q_1^T \mathbf{b}$, and takes on value $||\mathbf{r}|| = ||\mathbf{c}_2||$.

QR Factorization and Least Squares Review

• Recall: $A\mathbf{x} \approx \mathbf{b}$.

$$A = QR \text{ or } A = [Q_l Q_r] \begin{bmatrix} R \\ O \end{bmatrix},$$

with $\tilde{Q} := [Q_l \ Q_r]$ square.

- If \hat{Q} and \tilde{Q} are $m \times m$ orthogonal matrices, then $\hat{Q}\tilde{Q}$ is also orthogonal.
- Least squares problem: Find \mathbf{x} such that

$$\mathbf{r} := (QR\mathbf{x} - \mathbf{b}) \perp \operatorname{range}(A) \equiv \operatorname{range}(Q).$$
$$0 = Q^{T}\mathbf{r} = Q^{T}QR\mathbf{x} - Q^{T}\mathbf{b}$$
$$R\mathbf{x} = Q^{T}\mathbf{b}$$
$$\mathbf{x} = R^{-1}Q^{T}\mathbf{b}.$$

• Can solve least squares problem by finding QR = A.

- Compare with normal equation approach:

$$\mathbf{y} = A(A^T A)^{-1} A^T \mathbf{b}$$

= projection onto $\mathcal{R}(A) \equiv \mathcal{R}(Q)$.

- Here, QQ^T and $A(A^TA)^{-1}A^T$ are both projectors.
- QQ^T is generally better conditioned than the normal equation approach.

Here, Q is the "reduced Q" matrix.

Normal Equations Orthogonal Methods SVD

Computing QR Factorization

- To compute QR factorization of $m \times n$ matrix A, with m > n, we annihilate subdiagonal entries of successive columns of A, eventually reaching upper triangular form
- Similar to LU factorization by Gaussian elimination, but use orthogonal transformations instead of elementary elimination matrices
- Possible methods include
 - Householder transformations
 - Givens rotations
 - Gram-Schmidt orthogonalization

Method 2: Householder Transformations

Normal Equations Orthogonal Methods SVD

Householder Transformations

Householder transformation has form

$$\boldsymbol{H} = \boldsymbol{I} - 2 \frac{\boldsymbol{v} \boldsymbol{v}^T}{\boldsymbol{v}^T \boldsymbol{v}}$$

for nonzero vector $oldsymbol{v}$

- H is orthogonal and symmetric: $H = H^T = H^{-1}$
- Given vector a, we want to choose v so that

$$\boldsymbol{H}\boldsymbol{a} = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \alpha \boldsymbol{e}_1$$

• Substituting into formula for *H*, we can take

 $\boldsymbol{v} = \boldsymbol{a} - \alpha \boldsymbol{e}_1$

and $\alpha = \pm \|\boldsymbol{a}\|_2$, with sign chosen to avoid cancellation

Householder Reflection

Recall, $I - \underline{v}(\underline{v}^T \underline{v})^{-1} \underline{v}^T$ is a projector onto $R^{\perp}(\underline{v})$.

Therefore, $I - 2\underline{v}(\underline{v}^T \underline{v})^{-1} \underline{v}^T$ will reflect the transformed vector past $R^{\perp}(\underline{v})$.

With Householder, choose \underline{v} such that the reflected vector has all entries below the *k*th one set to zero.

Also, choose \underline{v} to avoid cancellation in kth component.

Householder Derivation

$$H\mathbf{a} = \mathbf{a} - 2\frac{\mathbf{v}^T \mathbf{a}}{\mathbf{v}^T \mathbf{v}} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{pmatrix} = \begin{pmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

 $\mathbf{v} = \mathbf{a} - \alpha \mathbf{e}_1 \leftarrow$ Choose α to avoid cancellation.

$$\mathbf{v}^T \mathbf{a} = \mathbf{a}^T \mathbf{a} - \alpha a_1, \qquad \mathbf{v}^T \mathbf{v} = \mathbf{a}^T \mathbf{a} - 2\alpha a_1 + \alpha^2$$

$$H\mathbf{a} = \mathbf{a} - 2\frac{\left(\mathbf{a}^{T}\mathbf{a} - \alpha a_{1}\right)}{\mathbf{a}^{T}\mathbf{a} - 2\alpha a_{1} + \alpha^{2}} \left(\mathbf{a} - \alpha \mathbf{e}_{1}\right)$$
$$= \mathbf{a} - 2\frac{||\mathbf{a}||^{2} \pm ||\mathbf{a}||a_{1}}{2||\mathbf{a}||^{2} \pm 2||\mathbf{a}||a_{1}} \left(\mathbf{a} - \alpha \mathbf{e}_{1}\right)$$
$$= \mathbf{a} - \left(\mathbf{a} - \alpha \mathbf{e}_{1}\right) = \alpha \mathbf{e}_{1}.$$

Choose
$$\alpha = -\operatorname{sign}(a_1)||\mathbf{a}|| = -\left(\frac{a_1}{|a_1|}\right)||\mathbf{a}||.$$

Normal Equations Orthogonal Methods SVD

Example: Householder Transformation

If
$$\boldsymbol{a} = \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}^T$$
, then we take
 $\boldsymbol{v} = \boldsymbol{a} - \alpha \boldsymbol{e}_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix}$

where $\alpha = \pm \|\boldsymbol{a}\|_2 = \pm 3$

- Since a_1 is positive, we choose negative sign for α to avoid cancellation, so $\boldsymbol{v} = \begin{bmatrix} 2\\1\\2 \end{bmatrix} \begin{bmatrix} -3\\0\\0 \end{bmatrix} = \begin{bmatrix} 5\\1\\2 \end{bmatrix}$
- To confirm that transformation works,

$$\boldsymbol{H}\boldsymbol{a} = \boldsymbol{a} - 2\frac{\boldsymbol{v}^{T}\boldsymbol{a}}{\boldsymbol{v}^{T}\boldsymbol{v}}\boldsymbol{v} = \begin{bmatrix} 2\\1\\2 \end{bmatrix} - 2\frac{15}{30}\begin{bmatrix} 5\\1\\2 \end{bmatrix} = \begin{bmatrix} -3\\0\\0 \end{bmatrix}$$

Normal Equations Orthogonal Methods SVD

Householder QR Factorization

- To compute QR factorization of *A*, use Householder transformations to annihilate subdiagonal entries of each successive column
- Each Householder transformation is applied to entire matrix, but does not affect prior columns, so zeros are preserved
- In applying Householder transformation *H* to arbitrary vector *u*,

$$\boldsymbol{H}\boldsymbol{u} = \left(\boldsymbol{I} - 2\frac{\boldsymbol{v}\boldsymbol{v}^T}{\boldsymbol{v}^T\boldsymbol{v}}\right)\boldsymbol{u} = \boldsymbol{u} - \left(2\frac{\boldsymbol{v}^T\boldsymbol{u}}{\boldsymbol{v}^T\boldsymbol{v}}\right)\boldsymbol{v}$$

which is much cheaper than general matrix-vector multiplication and requires only vector v, not full matrix H

Normal Equations Orthogonal Methods SVD

Householder QR Factorization, continued

Process just described produces factorization

$$oldsymbol{H}_n\cdotsoldsymbol{H}_1oldsymbol{A}=egin{bmatrix}oldsymbol{R}\oldsymbol{O}\end{bmatrix}$$

where \boldsymbol{R} is $n\times n$ and upper triangular

• If
$$oldsymbol{Q} = oldsymbol{H}_1 \cdots oldsymbol{H}_n$$
, then $oldsymbol{A} = oldsymbol{Q} egin{bmatrix} oldsymbol{R} \ oldsymbol{O} \end{bmatrix}$

- To preserve solution of linear least squares problem, right-hand side b is transformed by same sequence of Householder transformations
- Then solve triangular least squares problem $\begin{bmatrix} n \\ n \end{bmatrix}$

$$\begin{bmatrix} m{k} \\ m{k} \end{bmatrix} m{k} \cong m{Q}^T m{b}$$

Normal Equations Orthogonal Methods SVD

Householder QR Factorization, continued

- For solving linear least squares problem, product Q of Householder transformations need not be formed explicitly
- *R* can be stored in upper triangle of array initially containing *A*
- Householder vectors v can be stored in (now zero) lower triangular portion of A (almost)
- Householder transformations most easily applied in this form anyway

Normal Equations Orthogonal Methods SVD

Example: Householder QR Factorization

• For polynomial data-fitting example given previously, with

$$oldsymbol{A} = egin{bmatrix} 1 & -1.0 & 1.0 \ 1 & -0.5 & 0.25 \ 1 & 0.0 & 0.0 \ 1 & 0.5 & 0.25 \ 1 & 1.0 & 1.0 \end{bmatrix}, \quad oldsymbol{b} = egin{bmatrix} 1.0 \ 0.5 \ 0.0 \ 0.5 \ 2.0 \end{bmatrix}$$

• Householder vector v_1 for annihilating subdiagonal entries of first column of A is

$$\boldsymbol{v}_{1} = \begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix} - \begin{bmatrix} -2.236\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} 3.236\\1\\1\\1\\1\\1 \end{bmatrix}$$

Normal Equations Orthogonal Methods SVD

Example, continued

 Applying resulting Householder transformation H₁ yields transformed matrix and right-hand side

	-2.236	0	-1.118			[-1.789]
	0	-0.191	-0.405			-0.362
$H_1A =$	0	0.309	-0.655	,	$H_1b =$	-0.862
	0	0.809	-0.405			-0.362
	0	1.309	0.345			1.138

• Householder vector v_2 for annihilating subdiagonal entries of second column of H_1A is

$$\boldsymbol{v}_2 = \begin{bmatrix} 0\\ -0.191\\ 0.309\\ 0.809\\ 1.309 \end{bmatrix} - \begin{bmatrix} 0\\ 1.581\\ 0\\ 0\\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ -1.772\\ 0.309\\ 0.809\\ 1.309 \end{bmatrix}$$

Example, continued

• Applying resulting Householder transformation H_2 yields

	-2.236	0	-1.118		[-1.789]
	0	1.581	0		0.632
$oldsymbol{H}_2oldsymbol{H}_1oldsymbol{A} =$	0	0	-0.725	$, oldsymbol{H}_2oldsymbol{H}_1oldsymbol{b} =$	-1.035
	0	0	-0.589		-0.816
	0	0	0.047		0.404

• Householder vector v_3 for annihilating subdiagonal entries of third column of H_2H_1A is

$$\boldsymbol{v}_3 = \begin{bmatrix} 0\\0\\-0.725\\-0.589\\0.047 \end{bmatrix} - \begin{bmatrix} 0\\0\\0.935\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\-1.660\\-0.589\\0.047 \end{bmatrix}$$

Normal Equations Orthogonal Methods SVD

Example, continued

• Applying resulting Householder transformation H_3 yields

$$\boldsymbol{H}_{3}\boldsymbol{H}_{2}\boldsymbol{H}_{1}\boldsymbol{A} = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & 0.935 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{H}_{3}\boldsymbol{H}_{2}\boldsymbol{H}_{1}\boldsymbol{b} = \begin{bmatrix} -1.789 \\ 0.632 \\ 1.336 \\ 0.026 \\ 0.337 \end{bmatrix}$$

• Now solve upper triangular system $Rx = c_1$ by back-substitution to obtain $x = \begin{bmatrix} 0.086 & 0.400 & 1.429 \end{bmatrix}^T$

Note: $H_k \underline{a}_j = \underline{a}_j$ for j < k.

Householder Transformations

$$H_{1} A = \begin{pmatrix} x & x & x \\ x & x \\ x & x \end{pmatrix}, \qquad H_{1} \mathbf{b} \longrightarrow \mathbf{b}^{(1)} = \begin{pmatrix} x \\ x \\ x \\ x \end{pmatrix}$$
$$H_{2} H_{1} A = \begin{pmatrix} x & x & x \\ x & x \\ x \\ x \end{pmatrix}, \qquad H_{2} \mathbf{b}^{(1)} \longrightarrow \mathbf{b}^{(2)} = \begin{pmatrix} x \\ x \\ x \\ x \end{pmatrix}$$
$$H_{3} H_{2} H_{1} A = \begin{pmatrix} x & x & x \\ x & x \\ x \\ x \end{pmatrix}, \qquad H_{3} \mathbf{b}^{(2)} \longrightarrow \mathbf{b}^{(3)} = \begin{pmatrix} \mathbf{c}_{1} \\ \mathbf{c}_{2} \end{pmatrix}.$$

Questions: How does $H_3 H_2 H_1$ relate to Q or Q_1 ??

What is Q in this case?

Method 3: Givens Rotations

Normal Equations Orthogonal Methods SVD

Givens Rotations

- Givens rotations introduce zeros one at a time
- Given vector $\begin{bmatrix} a_1 & a_2 \end{bmatrix}^T$, choose scalars c and s so that

$$\begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}$$

with $c^2 + s^2 = 1$, or equivalently, $\alpha = \sqrt{a_1^2 + a_2^2}$

• Previous equation can be rewritten

$$\begin{bmatrix} a_1 & a_2 \\ a_2 & -a_1 \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}$$

• Gaussian elimination yields triangular system

$$\begin{bmatrix} a_1 & a_2 \\ 0 & -a_1 - a_2^2/a_1 \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} = \begin{bmatrix} \alpha \\ -\alpha a_2/a_1 \end{bmatrix}$$

Normal Equations Orthogonal Methods SVD

Givens Rotations, continued

Back-substitution then gives

$$s = rac{lpha a_2}{a_1^2 + a_2^2}$$
 and $c = rac{lpha a_1}{a_1^2 + a_2^2}$

• Finally,
$$c^2 + s^2 = 1$$
, or $\alpha = \sqrt{a_1^2 + a_2^2}$, implies

$$c = rac{a_1}{\sqrt{a_1^2 + a_2^2}}$$
 and $s = rac{a_2}{\sqrt{a_1^2 + a_2^2}}$

2 x 2 Rotation Matrices

```
% Rotation Matrix Demo
X = [0 \ 1 \ ; \dots \ \% \ [ \ x \ 0 \ x \ 1]
   0 2]; % y0 y1 ]
hold off
X 0 = X;
for t=0:.2:3;
  c=cos(t); s=sin(t);
  R = [C s; -s c];
  X = R * X 0;
  x=X(1,:); y=X(2,:);
  plot(x,y,'r.-');
  axis equal; axis ([-3 3 -3 3])
  hold on
  pause(.3)
end;
```


Normal Equations Orthogonal Methods SVD

Example: Givens Rotation

• Let $\boldsymbol{a} = \begin{bmatrix} 4 & 3 \end{bmatrix}^T$

• To annihilate second entry we compute cosine and sine

$$c = \frac{a_1}{\sqrt{a_1^2 + a_2^2}} = \frac{4}{5} = 0.8 \quad \text{and} \quad s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}} = \frac{3}{5} = 0.6$$

• Rotation is then given by

$$\boldsymbol{G} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{bmatrix}$$

• To confirm that rotation works,

$$\boldsymbol{Ga} = \begin{bmatrix} 0.8 & 0.6\\ -0.6 & 0.8 \end{bmatrix} \begin{bmatrix} 4\\ 3 \end{bmatrix} = \begin{bmatrix} 5\\ 0 \end{bmatrix}$$

Normal Equations Orthogonal Methods SVD

Givens QR Factorization

 More generally, to annihilate selected component of vector in n dimensions, rotate target component with another component

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & c & 0 & s & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -s & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} = \begin{bmatrix} a_1 \\ \alpha \\ a_3 \\ 0 \\ a_5 \end{bmatrix}$$

- By systematically annihilating successive entries, we can reduce matrix to upper triangular form using sequence of Givens rotations
- Each rotation is orthogonal, so their product is orthogonal, producing QR factorization

Givens Rotations

- If G is a 2×2 block, G_k Selectively acts on two adjacent rows.
- The *full* rows.

Normal Equations Orthogonal Methods SVD

Givens QR Factorization

- Straightforward implementation of Givens method requires about 50% more work than Householder method, and also requires more storage, since each rotation requires two numbers, c and s, to define it
- These disadvantages can be overcome, but requires more complicated implementation
- Givens can be advantageous for computing QR factorization when many entries of matrix are already zero, since those annihilations can then be skipped

Givens QR

A particularly attractive use of Givens QR is when A is upper Hessenberg – A is upper triangular with one additional nonzero diagonal below the main one: A_{ij} = 0 if i > j+1

							•	•	•	•	•	•	•
0.1967	0.2973	0.0899	0.3381	0.5261	0.3965	0.1279							
0.0934	0.0620	0.0809	0.2940	0.7297	0.0616	0.5495	•	•	•	•	•	•	•
0	0.2982	0.7772	0.7463	0.7073	0.7802	0.4852		•	•	•	•	•	•
0	0	0.9051	0.0103	0.7814	0.3376	0.8905							
0	0	0	0.0484	0.2880	0.6079	0.7990							
0	0	0	0	0.6925	0.7413	0.7343				•	•	•	•
0	0	0	0	0	0.1048	0.0513					•	•	•

- In this case, we require Givens row operations applied only n times, instead of O(n²) times.
- □ Work for Givens is thus $O(n^2)$, vs. $O(n^3)$ for Householder.
- Upper Hessenberg matrices arise when computing eigenvalues.

Successive Givens Rotations

As with Householder transformations, we apply successive Givens rotations, G_1, G_2 , etc.

• How many Givens rotations (total) are required for the $m \times n$ case?

- How does $\ldots G_3 G_2 G_1$ relate to Q or Q_1 ?
- What is Q in this case?

Normal Equations Orthogonal Methods SVD

Rank Deficiency

- If rank(A) < n, then QR factorization still exists, but yields singular upper triangular factor R, and multiple vectors x give minimum residual norm
- Common practice selects minimum residual solution x having smallest norm
- Can be computed by QR factorization with column pivoting or by singular value decomposition (SVD)
- Rank of matrix is often not clear cut in practice, so relative tolerance is used to determine rank

Normal Equations Orthogonal Methods SVD

Example: Near Rank Deficiency

• Consider 3×2 matrix

	0.641	0.242
A =	0.321	0.121
	0.962	0.363

Computing QR factorization,

$$\boldsymbol{R} = \begin{bmatrix} 1.1997 & 0.4527 \\ 0 & 0.0002 \end{bmatrix}$$

- *R* is extremely close to singular (exactly singular to 3-digit accuracy of problem statement)
- If R is used to solve linear least squares problem, result is highly sensitive to perturbations in right-hand side
- For practical purposes, rank(A) = 1 rather than 2, because columns are nearly linearly dependent

Normal Equations Orthogonal Methods SVD

QR with Column Pivoting

- Instead of processing columns in natural order, select for reduction at each stage column of remaining unreduced submatrix having maximum Euclidean norm
- If rank(A) = k < n, then after k steps, norms of remaining unreduced columns will be zero (or "negligible" in finite-precision arithmetic) below row k
- Yields orthogonal factorization of form

$$oldsymbol{Q}^Toldsymbol{A}oldsymbol{P} = egin{bmatrix} oldsymbol{R} & oldsymbol{S} \ oldsymbol{O} & oldsymbol{O} \end{bmatrix}$$

where R is $k \times k$, upper triangular, and nonsingular, and permutation matrix P performs column interchanges

Normal Equations Orthogonal Methods SVD

QR with Column Pivoting, continued

• Basic solution to least squares problem $Ax \cong b$ can now be computed by solving triangular system $Rz = c_1$, where c_1 contains first k components of $Q^T b$, and then taking

$$oldsymbol{x} = oldsymbol{P} egin{bmatrix} oldsymbol{z} \ oldsymbol{0} \end{bmatrix}$$

- Minimum-norm solution can be computed, if desired, at expense of additional processing to annihilate S
- rank(A) is usually unknown, so rank is determined by monitoring norms of remaining unreduced columns and terminating factorization when maximum value falls below chosen tolerance

Normal Equations **Orthogonal Methods** SVD

Comparison of Methods

- Forming normal equations matrix $A^T A$ requires about $n^2m/2$ multiplications, and solving resulting symmetric linear system requires about $n^3/6$ multiplications
- Solving least squares problem using Householder QR factorization requires about $mn^2 - n^3/3$ multiplications
- If $m \approx n$, both methods require about same amount of work
- If $m \gg n$, Householder QR requires about twice as much work as normal equations
- Cost of SVD is proportional to $mn^2 + n^3$, with proportionality constant ranging from 4 to 10, depending on algorithm used

Normal Equations Orthogonal Methods SVD

Comparison of Methods, continued

- Normal equations method produces solution whose relative error is proportional to $[cond(A)]^2$
- Required Cholesky factorization can be expected to break down if $cond(A) \approx 1/\sqrt{\epsilon_{mach}}$ or worse
- Householder method produces solution whose relative error is proportional to

 $\operatorname{cond}(\boldsymbol{A}) + \|\boldsymbol{r}\|_2 \, [\operatorname{cond}(\boldsymbol{A})]^2$

which is best possible, since this is inherent sensitivity of solution to least squares problem

• Householder method can be expected to break down (in back-substitution phase) only if $cond(A) \approx 1/\epsilon_{mach}$ or worse

Normal Equations Orthogonal Methods SVD

Comparison of Methods, continued

- Householder is more accurate and more broadly applicable than normal equations
- These advantages may not be worth additional cost, however, when problem is sufficiently well conditioned that normal equations provide sufficient accuracy
- For rank-deficient or nearly rank-deficient problems, Householder with column pivoting can produce useful solution when normal equations method fails outright
- SVD is even more robust and reliable than Householder, but substantially more expensive

Normal Equations Orthogonal Methods SVD

Singular Value Decomposition

• Singular value decomposition (SVD) of $m \times n$ matrix ${\boldsymbol A}$ has form

$$A = U\Sigma V^T$$

where U is $m \times m$ orthogonal matrix, V is $n \times n$ orthogonal matrix, and Σ is $m \times n$ diagonal matrix, with

$$\sigma_{ij} = \begin{cases} 0 & \text{for } i \neq j \\ \sigma_i \ge 0 & \text{for } i = j \end{cases}$$

- Diagonal entries σ_i , called *singular values* of A, are usually ordered so that $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n$
- Columns u_i of U and v_i of V are called left and right singular vectors

SVD of Rectangular Matrix A

- $A = U\Sigma V^T$ is $m \times n$.
- U is $m \times m$, orthogonal.
- Σ is $m \times n$, diagonal, $\sigma_i > 0$.
- V is $n \times n$, orthogonal.

Normal Equations Orthogonal Methods SVD

Example: SVD

• SVD of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$
 is given by $U\Sigma V^T =$

$$\begin{bmatrix} .141 & .825 & -.420 & -.351 \\ .344 & .426 & .298 & .782 \\ .547 & .0278 & .664 & -.509 \\ .750 & -.371 & -.542 & .0790 \end{bmatrix} \begin{bmatrix} 25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} .504 & .574 & .644 \\ -.761 & -.057 & .646 \\ .408 & -.816 & .408 \end{bmatrix}$$

In square matrix case, U \varSigma V^T closely related to eigenpair, X \varLambda X⁻¹

Normal Equations Orthogonal Methods SVD

Applications of SVD

• *Minimum norm solution* to $Ax \cong b$ is given by

$$oldsymbol{x} = \sum_{\sigma_i
eq 0} rac{oldsymbol{u}_i^T oldsymbol{b}}{\sigma_i} oldsymbol{v}_i$$

For ill-conditioned or rank deficient problems, "small" singular values can be omitted from summation to stabilize solution

- Euclidean matrix norm: $\|A\|_2 = \sigma_{\max}$
- Euclidean condition number of matrix: $\operatorname{cond}(A) = \frac{\sigma_{\max}}{\sigma_{\min}}$
- *Rank of matrix*: number of nonzero singular values

SVD for Linear Least Squares Problem: $A = U\Sigma V^T$

$$A\underline{x} \approx \underline{b}$$

$$U\Sigma V^{T} \approx \underline{b}$$

$$U^{T}U\Sigma V^{T} \approx U^{T}\underline{b}$$

$$\Sigma V^{T} \approx U^{T}\underline{b}$$

$$\begin{bmatrix} \tilde{R} \\ O \end{bmatrix} \underline{x} \approx \begin{pmatrix} \underline{c}_{1} \\ \underline{c}_{2} \end{pmatrix}$$

$$\tilde{R}\underline{x} = \underline{c}_{1}$$

$$\underline{x} = \sum_{j=1}^{n} \underline{v}_{j} \frac{1}{\sigma_{j}} (\underline{c}_{1})_{j} = \sum_{j=1}^{n} \underline{v}_{j} \frac{1}{\sigma_{j}} \underline{u}_{j}^{T}\underline{b}$$

SVD for Linear Least Squares Problem: $A = U\Sigma V^T$

- SVD can also handle the rank deficient case.
- If there are only k singular values $\sigma_j > \epsilon$ then take only the first k contributions.

$$\underline{x} = \sum_{j=1}^{k} \underline{v}_j \frac{1}{\sigma_j} \underline{u}_j^T \underline{b}$$
Pseudoinverse

- Define pseudoinverse of scalar σ to be $1/\sigma$ if $\sigma \neq 0,$ zero otherwise
- Define pseudoinverse of (possibly rectangular) diagonal matrix by transposing and taking scalar pseudoinverse of each entry
- Then *pseudoinverse* of general real $m \times n$ matrix \boldsymbol{A} is given by

 $A^+ = V \Sigma^+ U^T$

- Pseudoinverse always exists whether or not matrix is square or has full rank
- If A is square and nonsingular, then $A^+ = A^{-1}$
- In all cases, minimum-norm solution to $Ax \cong b$ is given by $x = A^+ b$

Orthogonal Bases

- SVD of matrix, $A = U\Sigma V^T$, provides orthogonal bases for subspaces relevant to A
- Columns of U corresponding to nonzero singular values form orthonormal basis for span(A)
- Remaining columns of U form orthonormal basis for orthogonal complement span $(A)^{\perp}$
- Columns of V corresponding to zero singular values form orthonormal basis for null space of A
- Remaining columns of V form orthonormal basis for orthogonal complement of null space of A

Least Squares Data Fitting Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems Normal Equations Orthogonal Methods SVD

Lower-Rank Matrix Approximation

Another way to write SVD is

$$oldsymbol{A} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^T = \sigma_1 oldsymbol{E}_1 + \sigma_2 oldsymbol{E}_2 + \dots + \sigma_n oldsymbol{E}_n$$

with $oldsymbol{E}_i = oldsymbol{u}_i oldsymbol{v}_i^T$

- E_i has rank 1 and can be stored using only m + n storage locations
- Product $E_i x$ can be computed using only m + n multiplications
- Condensed approximation to A is obtained by omitting from summation terms corresponding to small singular values
- Approximation using k largest singular values is closest matrix of rank k to A
- Approximation is useful in image processing, data compression, information retrieval, cryptography, etc.

Low Rank Approximation to $A = U\Sigma V^T$

• Because of the diagonal form of Σ , we have

$$A = U\Sigma V^T = \sum_{j=1}^n \underline{u}_j \sigma_j \underline{v}_j^T$$

• A rank k approximation to A is given by

$$A \approx A_k := \sum_{j=1}^k \underline{u}_j \sigma_j \underline{v}_j^T$$

• A_k is the best approximation to A in the Frobenius norm,

$$||M||_F := \sqrt{m_{11}^2 + m_{21}^2 + \dots + m_{mn}^2}$$

SVD for Image Compression

- □ If we view an image as an m x n matrix, we can use the SVD to generate a low-rank compressed version.
- □ Full image storage cost scales as O(mn)
- **Compress image storage scales as** O(km) + O(kn), with k < m or n.

$$A \approx A_k := \sum_{j=1}^k \underline{u}_j \sigma_j \underline{v}_j^T$$

Image Compression

- □ If we view an image as an m x n matrix, we can use the SVD to generate a low-rank compressed version.
- □ Full image storage cost scales as O(mn)
- **Compress image storage scales as** O(km) + O(kn), with k < m or n.

$$A \approx A_k := \sum_{j=1}^k \underline{u}_j \sigma_j \underline{v}_j^T$$

k=1

Image Compression

- □ If we view an image as an m x n matrix, we can use the SVD to generate a low-rank compressed version.
- □ Full image storage cost scales as O(mn)
- **Compress image storage scales as** O(km) + O(kn), with k < m or n.

Matlab code

```
[X,A]=imread('collins_img.gif'); [m,n]=size(X);
Xo=X; imwrite(Xo, 'oldfile.png')
whos
X=double(X); [U,D,V] = svd(X); % COMPUTE SVD
X = 0 * X;
for k=1:min(m,n); k
    X = X + U(:,k) * D(k,k) * V(:,k)';
    Xi = uint8(X); imwrite(Xi, 'newfile.png'); spy(Xi>100);
    pause
```

end;

Image Compression

Compressed image storage scales as O(km) + O(kn), with k < m or n. k=1 k=2 k=3

k=20

k=50

(m=536, n=462)

k=10

Low-Rank Approximations to Solutions of Ax = b

If
$$\sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_n$$
,
 $\underline{x} \approx \sum_{j=1}^k \sigma_j^+ \underline{v}_j \underline{u}_j^T \underline{b}$

Other functions, aside from the inverse of the matrix, can also be approximated in this way, at relatively low cost, once the SVD is known.