
Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Outline

1 Numerical Integration

2 Numerical Differentiation

3 Richardson Extrapolation

Michael T. Heath Scientific Computing 2 / 61

Main Ideas

❑  Quadrature based on polynomial interpolation:
❑  Methods:

❑ Method of undetermined coefficients (e.g., Adams-Bashforth)
❑  Lagrangian interpolation

❑  Rules:
❑ Midpoint, Trapezoidal, Simpson, Newton-Cotes
❑ Gaussian Quadrature

❑  Quadrature based on piecewise polynomial interpolation
❑  Composite trapezoidal rule
❑  Composite Simpson
❑  Richardson extrapolation

❑  Differentiation
❑  Taylor series / Richardson extrapolation
❑  Derivatives of Lagrange polynomials
❑  Derivative matrices

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Integration
For f : R ! R, definite integral over interval [a, b]

I(f) =

Z b

a
f(x) dx

is defined by limit of Riemann sums

Rn =

nX

i=1

(xi+1 � xi) f(⇠i)

Riemann integral exists provided integrand f is bounded
and continuous almost everywhere
Absolute condition number of integration with respect to
perturbations in integrand is b� a

Integration is inherently well-conditioned because of its
smoothing effect

Michael T. Heath Scientific Computing 3 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Numerical Quadrature

Quadrature rule is weighted sum of finite number of
sample values of integrand function

To obtain desired level of accuracy at low cost,
How should sample points be chosen?
How should their contributions be weighted?

Computational work is measured by number of evaluations
of integrand function required

Michael T. Heath Scientific Computing 4 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Quadrature Rules

An n-point quadrature rule has form

Qn(f) =

nX

i=1

wi f(xi)

Points xi are called nodes or abscissas

Multipliers wi are called weights

Quadrature rule is
open if a < x1 and xn < b

closed if a = x1 and xn = b

Michael T. Heath Scientific Computing 5 / 61

•  Can also have (x1 x2 … xn) · a < b (Adams-Bashforth timesteppers)

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Quadrature Rules, continued

Quadrature rules are based on polynomial interpolation

Integrand function f is sampled at finite set of points

Polynomial interpolating those points is determined

Integral of interpolant is taken as estimate for integral of
original function

In practice, interpolating polynomial is not determined
explicitly but used to determine weights corresponding to
nodes

If Lagrange is interpolation used, then weights are given by

wi =

Z b

a
`i(x), i = 1, . . . , n

Michael T. Heath Scientific Computing 6 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Method of Undetermined Coefficients

Alternative derivation of quadrature rule uses method of

undetermined coefficients

To derive n-point rule on interval [a, b], take nodes
x1, . . . , xn as given and consider weights w1, . . . , wn as
coefficients to be determined

Force quadrature rule to integrate first n polynomial basis
functions exactly, and by linearity, it will then integrate any
polynomial of degree n� 1 exactly

Thus we obtain system of moment equations that
determines weights for quadrature rule

Michael T. Heath Scientific Computing 7 / 61

Quadrature Overview

I(f) :=

Z b

a
f(t) dt ⇡

nX

i=1

wi fi, =: Qn(f) fi := f(ti)

• Idea is to minimize the number of function evaluations.

• Small n is good.

• Several strategies:

– global rules

– composite rules

– composite rules + extrapolation

– adaptive rules

1

Global (Interpolatory) Quadrature Rules

• Generally, approximate f(t) by polynomial interpolant, p(t).

f(t) ⇡ p(t) =
nX

i=1

li(t) fi

I(f) =

Z b

a
f(t) dt ⇡

Z b

a
p(t) dt =: Qn(f)

Qn(f) =

Z b

a

nX

i=1

li(t) fi

!
dt =

nX

i=1

✓Z b

a
li(t) dt

◆
fi =

nX

i=1

wi fi.

wi =

Z b

a
li(t) dt

• We will see two types of global (interpolatory) rules:

– Newton-Cotes — interpolatory on uniformly spaced nodes.

– Gauss rules — interpolatory on optimally chosen point sets.

2

Examples
• Midpoint rule: li(t) = 1

w1 =

Z b

a
l1(t) dt =

Z b

a
1 dt = (b� a)

• Trapezoidal rule:

l1(t) =
t� b

a� b
, l2(t) =

t� a

b� a

w1 =

Z b

a
l1(t) dt =

1
2(b� a) =

Z b

a
l2(t) dt = w2

• Simpson’s rule:

w1 =

Z b

a
l1(t) dt =

b�a
6 =

Z b

a
l3(t) dt = w3

w2 =

Z b

a
l2(t) dt =

Z b

a

✓
t� a

b� a

◆✓
t� b

a� b

◆
dt =

2

3
(b� a)

• These are the Newton-Cotes quadrature rules for n=1, 2, and 3,
respectively.

– The midpoint rule is open.

– Trapezoid and Simpson’s rules are closed.

3

Finding Weights: Method of Undetermined Coefficients
METHOD OF UNDETERMINED COEFFICIENTS

Example 1: Find wi for [a, b] = [1, 2], n = 3.

• First approach: f = 1, t, t2.

I(1) =
3X

i=1

wi · 1 = 1

I(t) =
3X

i=1

wi · ti =
1

2
t2
����
2

1

I(t2) =
3X

i=1

wi · t2i =
1

3
t3
����
2

1

Results in 3⇥ 3 matrix for the wis.

• Second approach: Choose f so that some of the coe�cients multiplying
the wis vanish.

I1 = w1(1�
3

2
)(1� 2) =

Z 2

1
(t� 3

2
)(t� 2) dt

I2 = w2(
3

2
� 1)(

3

2
� 2) =

Z 2

1
(t� 1)(t� 2) dt

I3 = w3(2� 1)(2� 3

2
) =

Z 2

1
(t� 1)(t� 3

2
) dt

Corresponds to the Lagrange interpolant approach.

5

Finding Weights: Method of Undetermined Coefficients

METHOD OF UNDETERMINED COEFFICIENTS

Example 1: Find wi for [a, b] = [1, 2], n = 3.

• First approach: f = 1, t, t2.

I(1) =
3X

i=1

wi · 1 = 1

I(t) =
3X

i=1

wi · ti =
1

2
t2
����
2

1

I(t2) =
3X

i=1

wi · t2i =
1

3
t3
����
2

1

Results in 3⇥ 3 matrix for the wis.

• Second approach: Choose f so that some of the coe�cients multiplying
the wis vanish.

I1 = w1(1�
3

2
)(1� 2) =

Z 2

1
(t� 3

2
)(t� 2) dt

I2 = w2(
3

2
� 1)(

3

2
� 2) =

Z 2

1
(t� 1)(t� 2) dt

I3 = w3(2� 1)(2� 3

2
) =

Z 2

1
(t� 1)(t� 3

2
) dt

Corresponds to the Lagrange interpolant approach.

5

Method of Undetermined Coefficients

Example 2: Find wi for [a, b] = [0, 1], n = 3, but using fi = f(ti) = f(i),
with i = -2, -1, and 0. (The ti’s are outside the interval (a, b).)

• Result should be exact for f(t) 2 lP0, lP1, and lP2.

• Take f=1, f=t, and f=t2.

X
wi = 1 =

Z 1

0
1 dt

�2w�2 � w�1 =
1

2
=

Z 1

0
t dt

4w�2 + w�1 =
1

3
=

Z 1

0
t2 dt

• Find

w�2 =
5

12
w�1 = � 16

12
w0 =

23

12
.

• This example is useful for finding integration coe�cients for explicit time-
stepping methods that will be seen in later chapters.

6

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Example: Undetermined Coefficients

Derive 3-point rule Q3(f) = w1f(x1) + w2f(x2) + w3f(x3)

on interval [a, b] using monomial basis

Take x1 = a, x2 = (a+ b)/2, and x3 = b as nodes

First three monomials are 1, x, and x

2

Resulting system of moment equations is

w1 · 1 + w2 · 1 + w3 · 1 =

Z b

a
1 dx = x|ba = b� a

w1 · a+ w2 · (a+ b)/2 + w3 · b =

Z b

a
x dx = (x

2
/2)|ba = (b

2 � a

2
)/2

w1 · a2 + w2 · ((a+ b)/2)

2
+ w3 · b2 =

Z b

a
x

2
dx = (x

3
/3)|ba = (b

3 � a

3
)/3

Michael T. Heath Scientific Computing 8 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Example, continued

In matrix form, linear system is
2

4
1 1 1

a (a+ b)/2 b

a

2
((a+ b)/2)

2
b

2

3

5

2

4
w1

w2

w3

3

5
=

2

4
b� a

(b

2 � a

2
)/2

(b

3 � a

3
)/3

3

5

Solving system by Gaussian elimination, we obtain weights

w1 =
b� a

6

, w2 =
2(b� a)

3

, w3 =
b� a

6

which is known as Simpson’s rule

Michael T. Heath Scientific Computing 9 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Method of Undetermined Coefficients

More generally, for any n and choice of nodes x1, . . . , xn,
Vandermonde system

2

6664

1 1 · · · 1

x1 x2 · · · xn
...

...
x

n�1
1 x

n�1
2 · · · x

n�1
n

3

7775

2

6664

w1

w2
...
wn

3

7775
=

2

6664

b� a

(b

2 � a

2
)/2

...
(b

n � a

n
)/n

3

7775

determines weights w1, . . . , wn

Michael T. Heath Scientific Computing 10 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Stability of Quadrature Rules

Absolute condition number of quadrature rule is sum of
magnitudes of weights,

nX

i=1

|wi|

If weights are all nonnegative, then absolute condition
number of quadrature rule is b� a, same as that of
underlying integral, so rule is stable

If any weights are negative, then absolute condition
number can be much larger, and rule can be unstable

Michael T. Heath Scientific Computing 13 / 61

Conditioning

• Absolute condition number of integration:

I(f) =

Z b

a
f(t) dt

I(f̂) =

Z b

a
f̂(t) dt

���I(f)� I(f̂)
��� =

����
Z b

a
(f � f̂) dt

���� |b� a| ||f � f̂ ||1

• Absolute condition number is |b� a|.

• Absolute condition number of quadrature:

���Qn(f)�Qn(f̂)
���

�����

nX

i=1

wi

⇣
fi � f̂i

⌘�����

�����

nX

i=1

wi

����� max
i

���fi � f̂i
���

�����

nX

i=1

wi

����� ||f � f̂ ||1

C =
nX

i=1

|wi|

• If Qn(f) is interpolatory, then
P

wi = (b� a) :

Qn(1) =
nX

i=1

wi · 1 ⌘
Z b

a
1 dt = (b� a).

• If wi � 0, then C = (b� a).

• Otherwise, C > (b� a) and can be arbitrarily large as n �! 1.

4

Conditioning

• Absolute condition number of integration:

I(f) =

Z b

a
f(t) dt

I(f̂) =

Z b

a
f̂(t) dt

���I(f)� I(f̂)
��� =

����
Z b

a
(f � f̂) dt

���� |b� a| ||f � f̂ ||1

• Absolute condition number is |b� a|.

• Absolute condition number of quadrature:

���Qn(f)�Qn(f̂)
���

�����

nX

i=1

wi

⇣
fi � f̂i

⌘�����

�����

nX

i=1

wi

����� max
i

���fi � f̂i
���

�����

nX

i=1

wi

����� ||f � f̂ ||1

C =
nX

i=1

|wi|

• If Qn(f) is interpolatory, then
P

wi = (b� a) :

Qn(1) =
nX

i=1

wi · 1 ⌘
Z b

a
1 dt = (b� a).

• If wi � 0, then C = (b� a).

• Otherwise, C > (b� a) and can be arbitrarily large as n �! 1.

4

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Newton-Cotes Quadrature

Newton-Cotes quadrature rules use equally spaced nodes in
interval [a, b]

Midpoint rule

M(f) = (b� a)f

✓
a+ b

2

◆

Trapezoid rule

T (f) =

b� a

2

(f(a) + f(b))

Simpson’s rule

S(f) =

b� a

6

✓
f(a) + 4f

✓
a+ b

2

◆
+ f(b)

◆

Michael T. Heath Scientific Computing 14 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Example: Newton-Cotes Quadrature

Approximate integral I(f) =

R 1
0 exp(�x

2
) dx ⇡ 0.746824

M(f) = (1� 0) exp(�1/4) ⇡ 0.778801

T (f) = (1/2)[exp(0) + exp(�1)] ⇡ 0.683940

S(f) = (1/6)[exp(0) + 4 exp(�1/4) + exp(�1)] ⇡ 0.747180

< interactive example >
Michael T. Heath Scientific Computing 15 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Error Estimation

Expanding integrand f in Taylor series about midpoint
m = (a+ b)/2 of interval [a, b],

f(x) = f(m) + f

0
(m)(x�m) +

f

00
(m)

2

(x�m)

2

+

f

000
(m)

6

(x�m)

3
+

f

(4)
(m)

24

(x�m)

4
+ · · ·

Integrating from a to b, odd-order terms drop out, yielding

I(f) = f(m)(b� a) +

f

00
(m)

24

(b� a)

3
+

f

(4)
(m)

1920

(b� a)

5
+ · · ·

= M(f) + E(f) + F (f) + · · ·
where E(f) and F (f) represent first two terms in error
expansion for midpoint rule

Michael T. Heath Scientific Computing 16 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Error Estimation, continued

If we substitute x = a and x = b into Taylor series, add two
series together, observe once again that odd-order terms
drop out, solve for f(m), and substitute into midpoint rule,
we obtain

I(f) = T (f)� 2E(f)� 4F (f)� · · ·

Thus, provided length of interval is sufficiently small and
f

(4) is well behaved, midpoint rule is about twice as
accurate as trapezoid rule

Halving length of interval decreases error in either rule by
factor of about 1/8

Michael T. Heath Scientific Computing 17 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Error Estimation, continued

Difference between midpoint and trapezoid rules provides
estimate for error in either of them

T (f)�M(f) = 3E(f) + 5F (f) + · · ·
so

E(f) ⇡ T (f)�M(f)

3

Weighted combination of midpoint and trapezoid rules
eliminates E(f) term from error expansion

I(f) =

2

3

M(f) +

1

3

T (f)� 2

3

F (f) + · · ·

= S(f)� 2

3

F (f) + · · ·
which gives alternate derivation for Simpson’s rule and
estimate for its error

Michael T. Heath Scientific Computing 18 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Example: Error Estimation

We illustrate error estimation by computing approximate
value for integral

R 1
0 x

2
dx = 1/3

M(f) = (1� 0)(1/2)

2
= 1/4

T (f) =

1� 0

2

(0

2
+ 1

2
) = 1/2

E(f) ⇡ (T (f)�M(f))/3 = (1/4)/3 = 1/12

Error in M(f) is about 1/12, error in T (f) is about �1/6

Also,

S(f) = (2/3)M(f)+(1/3)T (f) = (2/3)(1/4)+(1/3)(1/2) = 1/3

which is exact for this integral, as expected

Michael T. Heath Scientific Computing 19 / 61

Example
f(x) = 2 � x

2

I(f) =

Z 1

�1
f(x) dx = 2x � x

3

3

����
1

�1

= 3
1

3
.

M(f) = 2 · f(0) = 2 · 2 = 4. (|error|=2/3)

T (f) = 2 · f(�1) + f(1)

2
= 2. (|error|=4/3)

1

❑  Error for midpoint rule is generally ½ that of trapezoidal rule.

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Accuracy of Quadrature Rules

Quadrature rule is of degree d if it is exact for every
polynomial of degree d, but not exact for some polynomial
of degree d+ 1

By construction, n-point interpolatory quadrature rule is of
degree at least n� 1

Rough error bound

|I(f)�Qn(f)| 1
4 h

n+1 kf (n)k1
where h = max{xi+1 � xi : i = 1, . . . , n� 1}, shows that
Qn(f) ! I(f) as n ! 1, provided f

(n) remains well
behaved

Higher accuracy can be obtained by increasing n or by
decreasing h

Michael T. Heath Scientific Computing 11 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Accuracy of Newton-Cotes Quadrature
Since n-point Newton-Cotes rule is based on polynomial
interpolant of degree n� 1, we expect rule to have degree
n� 1

Thus, we expect midpoint rule to have degree 0, trapezoid
rule degree 1, Simpson’s rule degree 2, etc.

From Taylor series expansion, error for midpoint rule
depends on second and higher derivatives of integrand,
which vanish for linear as well as constant polynomials

So midpoint rule integrates linear polynomials exactly,
hence its degree is 1 rather than 0

Similarly, error for Simpson’s rule depends on fourth and
higher derivatives, which vanish for cubics as well as
quadratic polynomials, so Simpson’s rule is of degree 3

Michael T. Heath Scientific Computing 20 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Accuracy of Newton-Cotes Quadrature

In general, odd-order Newton-Cotes rule gains extra
degree beyond that of polynomial interpolant on which it is
based
n-point Newton-Cotes rule is of degree n� 1 if n is even,
but of degree n if n is odd
This phenomenon is due to cancellation of positive and
negative errors

< interactive example >
Michael T. Heath Scientific Computing 21 / 61

Newton-Cotes Weights

n\j 1 2 3 4 5 6

2 1
2

1
2

3 1
3

4
3

1
3

4 3
8

9
8

9
8

3
8

5 14
45

64
45

8
15

64
45

14
45

6 95
288

125
96

125
144

125
144

125
96

95
288

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Drawbacks of Newton-Cotes Rules

Newton-Cotes quadrature rules are simple and often
effective, but they have drawbacks

Using large number of equally spaced nodes may incur
erratic behavior associated with high-degree polynomial
interpolation (e.g., weights may be negative)

Indeed, every n-point Newton-Cotes rule with n � 11 has at
least one negative weight, and

Pn
i=1 |wi| ! 1 as n ! 1,

so Newton-Cotes rules become arbitrarily ill-conditioned

Newton-Cotes rules are not of highest degree possible for
number of nodes used

Michael T. Heath Scientific Computing 22 / 61

Newton-Cotes Formulae: What Could Go Wrong?

❑  Demo: newton_cotes.m and newton_cotes2.m

❑  Newton-Cotes formulae are interpolatory.

❑  For high n, Lagrange interpolants through uniform points are ill-
conditioned.

❑  In quadrature, this conditioning is manifest through negative
quadrature weights (bad).

Imagine how the gradient
of Q responds to fi in this
case …

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Gaussian Quadrature

Gaussian quadrature rules are based on polynomial
interpolation, but nodes as well as weights are chosen to
maximize degree of resulting rule

With 2n parameters, we can attain degree of 2n� 1

Gaussian quadrature rules can be derived by method of
undetermined coefficients, but resulting system of moment
equations that determines nodes and weights is nonlinear

Also, nodes are usually irrational, even if endpoints of
interval are rational

Although inconvenient for hand computation, nodes and
weights are tabulated in advance and stored in subroutine
for use on computer

Michael T. Heath Scientific Computing 24 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Gaussian Quadrature

Gaussian quadrature rules are based on polynomial
interpolation, but nodes as well as weights are chosen to
maximize degree of resulting rule

With 2n parameters, we can attain degree of 2n� 1

Gaussian quadrature rules can be derived by method of
undetermined coefficients, but resulting system of moment
equations that determines nodes and weights is nonlinear

Also, nodes are usually irrational, even if endpoints of
interval are rational

Although inconvenient for hand computation, nodes and
weights are tabulated in advance and stored in subroutine
for use on computer

Michael T. Heath Scientific Computing 24 / 61

3
4

Lagrange Polynomials: Good and Bad Point Distributions

N=4

N=7

 φ2 φ4

N=8

 Uniform Gauss-Lobatto-Legendre

•  We can see that for N=8 one of the uniform weights is close to becoming negative.

3
5

Lagrange Polynomials: Good and Bad Point Distributions

•  All weights are positive.

gll_txt.m

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Example: Gaussian Quadrature Rule

Derive two-point Gaussian rule on [�1, 1],

G2(f) = w1f(x1) + w2f(x2)

where nodes xi and weights wi are chosen to maximize
degree of resulting rule

We use method of undetermined coefficients, but now
nodes as well as weights are unknown parameters to be
determined

Four parameters are to be determined, so we expect to be
able to integrate cubic polynomials exactly, since cubics
depend on four parameters

Michael T. Heath Scientific Computing 25 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Example, continued

Requiring rule to integrate first four monomials exactly
gives moment equations

w1 + w2 =

Z 1

�1
1 dx = x|1�1 = 2

w1x1 + w2x2 =

Z 1

�1
x dx = (x

2
/2)|1�1 = 0

w1x
2
1 + w2x

2
2 =

Z 1

�1
x

2
dx = (x

3
/3)|1�1 = 2/3

w1x
3
1 + w2x

3
2 =

Z 1

�1
x

3
dx = (x

4
/4)|1�1 = 0

Michael T. Heath Scientific Computing 26 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Example, continued

One solution of this system of four nonlinear equations in
four unknowns is given by

x1 = �1/

p
3, x2 = 1/

p
3, w1 = 1, w2 = 1

Another solution reverses signs of x1 and x2

Resulting two-point Gaussian rule has form

G2(f) = f(�1/

p
3) + f(1/

p
3)

and by construction it has degree three

In general, for each n there is unique n-point Gaussian
rule, and it is of degree 2n� 1

Gaussian quadrature rules can also be derived using
orthogonal polynomials

Michael T. Heath Scientific Computing 27 / 61

Gauss Quadrature, I

Consider

I :=

Z
1

�1

f(x) dx.

Find w

i

, x

i

i = 1, . . . , n, to maximize degree of accuracy, M .

• Cardinality, | . |: | lP
M

| = M + 1

|w
i

| + | x
i

| = 2n

M + 1 = 2n () M = 2n� 1

• Indeed, it is possible to find x

i

and w

i

such that all polynomials of degree

 M = 2n� 1 are integrated exactly.

• The n nodes, x

i

, are the zeros of the nth-order Legendre polynomial.

• The weights, w

i

, are the integrals of the cardinal Lagrange polynomials

associated with these nodes:

w

i

=

Z
1

�1

l

i

(x) dx, l

i

(x) 2 lP

n�1

, l

i

(x

j

) = �

ij

.

• Error scales like |I �Q

n

| ⇠ C

f

(2n)

(⇠)

(2n)!

(Q

n

exact for f(x) 2 lP

2n�1

.)

• n nodes are roots of orthogonal polynomials

2

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Change of Interval
Gaussian rules are somewhat more difficult to apply than
Newton-Cotes rules because weights and nodes are
usually derived for some specific interval, such as [�1, 1]

Given interval of integration [a, b] must be transformed into
standard interval for which nodes and weights have been
tabulated
To use quadrature rule tabulated on interval [↵,�],

Z �

↵
f(x) dx ⇡

nX

i=1

wif(xi)

to approximate integral on interval [a, b],

I(g) =

Z b

a
g(t) dt

we must change variable from x in [↵,�] to t in [a, b]

Michael T. Heath Scientific Computing 28 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Change of Interval, continued

Many transformations are possible, but simple linear
transformation

t =

(b� a)x+ a� � b↵

� � ↵

has advantage of preserving degree of quadrature rule

Michael T. Heath Scientific Computing 29 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Change of Interval, continued

Many transformations are possible, but simple linear
transformation

t =

(b� a)x+ a� � b↵

� � ↵

has advantage of preserving degree of quadrature rule

Michael T. Heath Scientific Computing 29 / 61

• Generally, the translation is much simpler:

ti = a +
⇠i + 1

2
(b� a)

• When ⇠ = �1, t = a. When ⇠ = 1, t = b.

• Here ⇠i, i=1,. . . ,n, are the Gauss points on (-1,1).

1

Use of Gauss Quadrature

• Generally, the translation is much simpler:

ti = a +
⇠i + 1

2
(b� a)

• When ⇠ = �1, t = a. When ⇠ = 1, t = b.

• Here ⇠i, i=1,. . . ,n, are the Gauss points on (-1,1).

• So, you simply look up the (⇠i, wi) pairs,
use the formula above to get ti, then evaluate

Qn =
(b� a)

2

X

i

wif(ti)

1

 *

(*that is, call a function)

Use of Gauss Quadrature

❑  There is a lot of software, in most every language, for computing the
nodes and weights for all of the Gauss, Gauss-Lobatto, Gauss-Radau
rules (Chebyshev, Legendre, etc.)

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Gaussian Quadrature

Gaussian quadrature rules have maximal degree and
optimal accuracy for number of nodes used

Weights are always positive and approximate integral
always converges to exact integral as n ! 1
Unfortunately, Gaussian rules of different orders have no
nodes in common (except possibly midpoint), so Gaussian
rules are not progressive

Thus, estimating error using Gaussian rules of different
order requires evaluating integrand function at full set of
nodes of both rules

Michael T. Heath Scientific Computing 30 / 61

 (except for Gauss-Chebyshev)

Gauss Quadrature Example

Gauss Quadrature Derivation

Gauss Quadrature: I

• Suppose g(x) 2 lP
m

with zeros x0, x1, . . . , xm�1.

g(x) = Ax

m + a

m�1x
m�1 + · · · + a1x + a0

= A(x� x0)(x� x1) · · · (x� x

m�1).| {z }
2 lPm

• Let n < m� 1 and consider the first n+ 1 zeros:

g(x) = (x� x0)(x� x1) · · · (x� x

n

)| {z }
=: qn+1(x)

A (x� x

n+1) · · · (x� x

m�1)| {z }
=: r(x)2 lPm�(n+1)

= q

n+1(x) r(x)

• Consider
f(x) 2 lP

m

, m > n+ 1,

p

n

(x) 2 lP
n

, (Lagrange interpolating polynomial.)

p

n

(x
i

) = f(x
i

), i = 0, . . . , n.

• Then, let

g(x) := f(x) � p

n

(x) 2 lP
m

g(x
i

) = f(x
i

) � p

n

(x
i

) = 0, i = 0, . . . , n,

g(x) = (x� x0)(x� x1) · · · (x� x

n

)A (x� x

n+1) · · · (x� x

m�1)

= q

n+1(x) r(x),

with r(x) 2 lP
m�(n+1).

• It follows that, for any f(x) 2 lP
m

, m > n+ 1, we can write

f(x) = p

n

(x) + q

n+1(x) r(x),

with r(x) 2 lP
m�(n+1).

Gauss Quadrature: I

• Suppose g(x) 2 lP
m

with zeros x0, x1, . . . , xm�1.

g(x) = Ax

m + a

m�1x
m�1 + · · · + a1x + a0

= A(x� x0)(x� x1) · · · (x� x

m�1).| {z }
2 lPm

• Let n < m� 1 and consider the first n+ 1 zeros:

g(x) = (x� x0)(x� x1) · · · (x� x

n

)| {z }
=: qn+1(x)

A (x� x

n+1) · · · (x� x

m�1)| {z }
=: r(x)2 lPm�(n+1)

= q

n+1(x) r(x)

• Consider
f(x) 2 lP

m

, m > n+ 1,

p

n

(x) 2 lP
n

, (Lagrange interpolating polynomial.)

p

n

(x
i

) = f(x
i

), i = 0, . . . , n.

• Then, let

g(x) := f(x) � p

n

(x) 2 lP
m

g(x
i

) = f(x
i

) � p

n

(x
i

) = 0, i = 0, . . . , n,

g(x) = (x� x0)(x� x1) · · · (x� x

n

)A (x� x

n+1) · · · (x� x

m�1)

= q

n+1(x) r(x),

with r(x) 2 lP
m�(n+1).

• It follows that, for any f(x) 2 lP
m

, m > n+ 1, we can write

f(x) = p

n

(x) + q

n+1(x) r(x),

with r(x) 2 lP
m�(n+1).

• Notice that
Z 1

�1
f(x) dx =

Z 1

�1
p

n

(x) dx +

Z 1

�1
q

n+1(x) r(x) dx

=

Z 1

�1

nX

i=0

f

i

l

i

(x)

!
dx +

Z 1

�1
q

n+1(x) r(x) dx

=
nX

i=0

f

i

Z 1

�1
l

i

(x) dx +

Z 1

�1
q

n+1(x) r(x) dx

=
nX

i=0

f

i

w

i

+

Z 1

�1
q

n+1(x) r(x) dx,

with w

i

:=

Z 1

�1
l

i

(x) dx.

• Note that the quadrature rule is exact i↵
Z 1

�1
q

n+1(x) r(x) dx = 0.

Orthogonal Polynomials

• The Legendre polynomials of degree k, ⇡
k

(x) 2 lP
k

are
orthogonal polynomials satisfying

(⇡
i

, ⇡

j

) :=

Z 1

�1
⇡

i

(x) ⇡
j

(x) dx = �

ij

• {⇡0, ⇡1, . . . , ⇡k} form a basis (a spanning set) for lP
k

.

• That is, for any p

k

(x) 2 lP
k

there is a unique set of coe�cients
�

k

such that

p

k

(x) = �0 ⇡0(x) + �1 ⇡1(x) + . . . + �

k

⇡

k

(x).

• Note that, if j > k, then

(⇡
j

, p

k

) =
kX

i=0

�

i

(⇡
j

, ⇡

i

) = 0.

• Returning to quadrature, our rule will be exact if
Z 1

�1
q

n+1(x) r(x) dx = 0.

• We get to choose the nodes, x0, x1, . . . , xn, that define q

n+1.

• If we choose the nodes to be the zeros of ⇡
n+1(x), then the

integral will vanish if r(x) 2 lP
k

, with k < n+ 1.

• Recall that r 2 lP
m�(n+1), which implies

m� (n+ 1) < n+ 1

m < 2n+ 2.

m 2n+ 1.

• Thus, using n + 1 nodes, x0, x1, . . . , xn, (the zeros of ⇡
n+1), we have a

quadrature rule that is exact for all polynomials of up to degree 2n+1.

Gauss Quadrature: II

• A common way to state the Gauss quadrature problem is, Find n + 1
weights, w

i

, and points, x

i

, that will maximize the degree of polynomial,

m, for which the quadrature rule will be exact.

• Since you have 2n+ 2 degrees of freedom (w
i

, x

i

), i = 0, . . . , n then you
should be able to be exact for a space of functions having cardinality
2n+ 2.

• The cardinality of lP
m

is m+ 1.

• Setting m+ 1 = 2n+ 2 we find m = 2n+ 1.

Gauss Lobatto Quadrature

• This is similar to the Gauss quadrature problem stated previously,
save that we constrain x0 = �1 and x

n

= +1, which means we now
have only 2n degrees of freedom.

• We should expect m = 2n� 1, and this is indeed the case when
we choose the x

i

s to be the zeros of (1� x

2)P 0
n

(x).

• As before, the weights are the integrals of the Lagrange cardinal
functions, l

i

(x).

Arbitrary Domains

• Usually, we’re interested in more general integrals, i.e.,

Ĩ :=

Z
b

a

f(x) dx.

• The integral can be computed using a change of basis, f [x(⇠)], with

x(⇠) := a +
b� a

2
(1 + ⇠) .

• Note that

dx =
b� a

2
d⇠ = J d⇠,

where J is the Jacobian associated with the map from [�1, 1] to [a, b].

• With this change of basis, we have

Ĩ =
b� a

2

Z 1

�1
f [x(⇠)] d⇠ =

b� a

2

Z 1

�1
f̂(⇠) d⇠

⇡ b� a

2

nX

i=0

w

i

f̂(⇠
i

)

!

⇡ b� a

2

nX

i=0

w

i

f(x
i

)

!

⇡ b� a

2

nX

i=0

w

i

f

i

!
.

• The quadrature weights stay the same.

• The quadrature points are given by x

i

= a+
1

2
(b� a)(1 + ⇠

i

).

• Here, the ⇠

i

s are the zeros of ⇡
n+1(⇠) or (1 � ⇠

2)⇡0
n

(⇠), depending on
whether one wants Gauss-Legendre (GL) or Gauss-Lobatto-Legendre
(GLL) quadrature.

• There are closed form expressions for the quadrature weights:

Gauss Gauss-Lobatto

w

i

=
2

(1� ⇠

i

)2P 0
n+1(⇠i)

w

i

=
2

n(n+ 1)[P
n

(⇠)]2
,

where P

k

is the kth-order Legendre polynomial normalized such that
P

k

(1) = 1.

• Most algorithms for finding the ⇠

i

s are based on solving an eigenvalue
problem for a tridiagonal matrix (the companion matrix).

• The matlab script zwgll.m returns the set (⇠
i

, w

i

) for n+1 node points.

Composite Rules

❑  Main Idea: Use your favorite rule on each panel and sum across
all panels.

❑  Particularly good if f(x) not differentiable at the knot points.

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Composite Quadrature

Alternative to using more nodes and higher degree rule is
to subdivide original interval into subintervals, then apply
simple quadrature rule in each subinterval

Summing partial results then yields approximation to
overall integral

This approach is equivalent to using piecewise
interpolation to derive composite quadrature rule

Composite rule is always stable if underlying simple rule is
stable

Approximate integral converges to exact interval as
number of subintervals goes to infinity provided underlying
simple rule has degree at least zero

Michael T. Heath Scientific Computing 33 / 61

Composite Quadrature Rules

❑  Composite Trapezoidal (QCT) and Composite Simpson (QCS)
rules work by breaking the interval [a,b] into panels and then
applying either trapezoidal or Simpson method to each panel.

❑  QCT is the most common, particularly since QCS is readily derived
via Richardson extrapolation at no extra work.

❑  QCT can be combined with Richardson extrapolation to get higher
order accuracy, not quite competitive with Gauss quadrature, but
a significant improvement. (This combination is known as
Romberg integration.)

❑  For periodic functions, QCT is a Gauss quadrature rule.

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Examples: Composite Quadrature

Subdivide interval [a, b] into k subintervals of length
h = (b� a)/k, letting xj = a+ jh, j = 0, . . . , k

Composite midpoint rule

Mk(f) =

kX

j=1

(xj�xj�1) f

✓
xj�1 + xj

2

◆
= h

kX

j=1

f

✓
xj�1 + xj

2

◆

Composite trapezoid rule

Tk(f) =

kX

j=1

(xj � xj�1)

2

(f(xj�1) + f(xj))

= h

�
1
2f(a) + f(x1) + · · ·+ f(xk�1) +

1
2f(b)

�

Michael T. Heath Scientific Computing 34 / 61

Implementation of Composite Trapezoidal Rule

Assuming uniform spacing h = (b� a)/k,

QCT :=

kX

j=1

Qj =

kX

j=1

h

2

(fj�1 + fj)

=

h

2

f0 + hf1 + hf2 + . . . + . . . + hfk�1 +

h

2

fk

=

kX

j=1

wj fj

1

Composite Trapezoidal Rule

I
j

:=

Z
xj

xj�1

f(x) dx =

h

2

(f
j�1 + f

j

) + O(h3
)

=: Q
j

+ O(h3
)

= Q
j

+ c
j

h3
+ higher order terms.

c
j

 1

12

max

[xj�1,xj]
|f 00

(x)|

I =

Z
b

a

f(x) dx =

kX

j=1

Q
j

| {z }
QCT

+

kX

j=1

c
j

h3
+ h.o.t.

|I �Q
CT

| + h.o.t. = h3
kX

j=1

c
j

 h3kmax

j

|c
j

| = h2
max

j

|c
j

|

1

(b-a)

Other Considerations with Composite Trapezoidal Rule

Composite Trapezoidal Rule: (uniform spacing, n panels)

T
h

:= h

f0 + f1

2

+

f1 + f2
2

+ · · · + f
n�1 + f

n

2

�

= h

"
n�1X

i=1

f
i

+

1

2

(f0 + f
n

)

#
,

=

nX

i=0

w
i

f
i

, w0 = w
n

=

h

2

, w
i

= h otherwise.

Stable (w
i

> 0).

Composite Midpoint Rule: (uniform spacing, n panels)

M
h

:= h
h
f 1

2
+ f 3

2
+ · · · + f

n� 1
2

i

= h

"
nX

i=1

f
i� 1

2

#
= h

nX

i=1

f(x0 + ih� h

2

)

=

nX

i=0

w
i

f
i

, w
i

= h.

(Note number of function evaluations.)

Accuracy? |˜I � I
h

| =??

Composite Trapezoidal Rule: (uniform spacing, n panels)

T
h

:= h

f0 + f1

2

+

f1 + f2
2

+ · · · + f
n�1 + f

n

2

�

= h

"
n�1X

i=1

f
i

+

1

2

(f0 + f
n

)

#
,

=

nX

i=0

w
i

f
i

, w0 = w
n

=

h

2

, w
i

= h otherwise.

Stable (w
i

> 0).

Composite Midpoint Rule: (uniform spacing, n panels)

M
h

:= h
h
f 1

2
+ f 3

2
+ · · · + f

n� 1
2

i

= h

"
nX

i=1

f
i� 1

2

#
= h

nX

i=1

f(x0 + ih� h

2

)

=

nX

i=0

w
i

f
i

, w
i

= h.

(Note number of function evaluations.)

Accuracy? |˜I � I
h

| =??

Single Panel: x 2 [x
i�1, xi].

• Taylor series about x
i� 1

2
:

f(x) = f
i� 1

2
+ (x� x

i� 1
2
)f 0

i� 1
2
+

(x� x
i� 1

2
)

2

2

f 00
i� 1

2
+

(x� x
i� 1

2
)

3

3!

f 000
i� 1

2
+ · · ·

• Integrate:

˜I
i

:=

Z
xi

xi�1

f(x) dx = hf
i� 1

2
+

(x� x
i� 1

2
)

2

2

�����

xi

xi�1

f 0
i� 1

2
+

(x� x
i� 1

2
)

3

3!

�����

xi

xi�1

f 00
i� 1

2
+ · · ·

= hf
i� 1

2
+ 0 +

2h3

3! 2

3
f 00
i� 1

2
+ 0 +

2h5

5! 2

5
f iv

i� 1
2
+ 0 +

2h7

7! 2

7
f vi

i� 1
2
+ · · ·

= hf
i� 1

2
+

h3

24

f 00
i� 1

2
+

h5

1920

f iv

i� 1
2
+

h7

322560

f vi

i� 1
2
+ · · ·

= M
i

+

h3

24

f 00
i� 1

2
+

h5

1920

f iv

i� 1
2
+

h7

322560

f vi

i� 1
2
+ · · ·

• Therefore, midpoint rule error (single panel) is:

M
i

=

˜I � h3

24

f 00
i� 1

2
� h5

1920

f iv

i� 1
2
� h7

322560

f vi

i� 1
2
� · · ·

• Locally, midpoint rule is O(h3
) accurate.

Trapezoidal Rule: (single panel)

• Taylor series about x
i� 1

2
.

f(x
i�1) = f

i� 1
2
� h

2

f 0
i� 1

2
+

✓
h

2

◆2 f 00
i� 1

2

2!

�
✓
h

2

◆3 f 000
i� 1

2

3!

+ · · ·

f(x
i

) = f
i� 1

2
+

h

2

f 0
i� 1

2
+

✓
h

2

◆2

f 00
i� 1

2
+

✓
h

2

◆3

f 000
i� 1

2
+ · · ·

• Take average:

h

2

[f
i�1 + f

i

] = M
h

+

h3

2! 2

2
f 00
i� 1

2
+

h5

4! 2

4
f iv

i� 1
2
+

h7

6! 2

6
f vi

i� 1
2
+ · · ·

=

˜I
i

+

h3

2! 2

2

✓
1� 1

3

◆
f 00
i� 1

2
+

h5

4! 2

4

✓
1� 1

5

◆
f iv

i� 1
2
+

h7

6! 2

6

✓
1� 1

7

◆
f vi

i� 1
2
+ · · ·

=

˜I
i

+

h3

12

f 00
+

h5

480

f iv

+

h7

53760

f vi

+ · · ·

=

˜I
i

+ c2h
3 f 00

i� 1
2
+ c4h

5 f iv

i� 1
2
+ c6h

7 f vi

i� 1
2
+ · · ·

• Leading-order error for trapezoid rule is twice that of midpoint.

Composite Rule: Sum trapezoid rule across n panels:

I
CT

:= h

"
n�1X

i=1

f
i

+

1

2

(f0 + f
n

)

#

=

nX

i=1

h

2

[f
i�1 + f

i

]

=

nX

i=1

h
˜I
i

+ c2h
3 f 00

i� 1
2
+ c4h

5 f iv

i� 1
2
+ c6h

7 f vi

i� 1
2
+ · · ·

i

=

˜I + c2h
2

"
h

nX

i=1

f 00
i� 1

2

#
+ c4h

4

"
h

nX

i=1

f iv

i� 1
2

#
+ · · ·

=

˜I +

h2

12

Z
b

a

f 00 dx + h.o.t.

�
+ c4h

4

Z
b

a

f iv dx + h.o.t.

�
+ · · ·

=

˜I +

h2

12

[f 0
(b)� f 0

(a)] + O(h4
).

• Global truncation error is O(h2
) and has a particularly elegant form.

• Can estimate f 0
(a) and f 0

(b) with O(h2
) accurate formula to

yield O(h4
) accuracy.

• With care, can also precisely define the coe�cient for h4
, h6

,

and other terms (Euler-Maclaurin Sum Formula).

Examples.

• Apply (composite) trapezoidal rule for several endpoint

conditions, f 0
(a) and f 0

(b):

1. Standard case (nothing special).

2. Lucky case (f 0
(a) = f 0

(b) = 0).

3. Unlucky case (f 0
(b) = �1).

4. Really lucky case (f (k)
(a) = f (k)

(b), k = 1, 2,. . .).

• Functions on [a, b] = [0, 1]:

(1) f(x) = ex

(2) f(x) = ex (1� cos 2⇡x)

(3) f(x) =

p
1� x2

(4) f(x) = log(2 + cos 2⇡x).

• quad1.m example.

Working with 1D Nodal Bases

6
9

trap_v_gll.m, trap_txt.m

Working with 1D Nodal Bases on GLL Points

7
0

trap_v_gll.m, gll_txt.m

Working with 1D Nodal Bases on GLL Points

7
1

Spectral
 Convergence

Working with 1D Nodal Bases

❑  What is the convergence behavior for highly oscillatory functions?

7
2

trap_v_gll_k.m

Strategies to improve to O(h4
) or higher?

• Endpoint Correction.

– Estimate f 0
(a) and f 0

(b) to O(h2
) using available f

i

data.

– How?

– Q: What happens if you don’t have at least O(h2
) accuracy?

– - Requires knowing the c2 coe�cient. :(

• Richardson Extrapolation.

I
h

=

˜I + c2h
2
+ O(h4

)

I2h =

˜I + 4c2h
2
+ O(h4

)

(Reuses f
i

, i=even!)

I
R

=

4

3

I
h

� 1

3

I2h

�

= I
simpson

!

trap_endpoint.m

Composite Trapezoidal + Richardson Extrapolation
Can in fact show that if f 2 C2K+1

then

I = QCT + c̃2h
2
+ c̃4h

4
+ c̃6h

6
+ . . . + c̃2Kh

2K
+ O(h2K+1

)

Suggests the following strategy:

(1) I = QCT (h) + c̃2h
2
+ c̃4h

4
+ c̃6h

6
+ . . .

(2) I = QCT (2h) + c̃2(2h)
2
+ c̃4(2h)

4
+ c̃6(2h)

6
+ . . .

Take 4 ⇥(1)-(2) (eliminate O(h2
) term):

4I � I = 4QCT (h) �QCT (2h) + c04h
4
+ c06h

6
+ . . .

I =

4

3

QCT (h) �
1

3

QCT (2h) + ĉ4h
4
+ ĉ6h

6
+ . . .

= QS(2h) + ĉ4h
4
+ ĉ6h

6
+ h.o.t.

Here, QS(2h) ⌘ 4

3

QCT (h) �
1

3

QCT (2h)

1

Composite Trapezoidal + Richardson Extrapolation
Can in fact show that if f 2 C2K+1

then

I = QCT + c̃2h
2
+ c̃4h

4
+ c̃6h

6
+ . . . + c̃2Kh

2K
+ O(h2K+1

)

Suggests the following strategy:

(1) I = QCT (h) + c̃2h
2
+ c̃4h

4
+ c̃6h

6
+ . . .

(2) I = QCT (2h) + c̃2(2h)
2
+ c̃4(2h)

4
+ c̃6(2h)

6
+ . . .

Take 4 ⇥(1)-(2) (eliminate O(h2
) term):

4I � I = 4QCT (h) �QCT (2h) + c04h
4
+ c06h

6
+ . . .

I =

4

3

QCT (h) �
1

3

QCT (2h) + ĉ4h
4
+ ĉ6h

6
+ . . .

= QS(2h) + ĉ4h
4
+ ĉ6h

6
+ h.o.t.

Here, QS(2h) ⌘ 4

3

QCT (h) �
1

3

QCT (2h)

1

Composite Trapezoidal + Richardson Extrapolation

Original error – O(h2)

New error – O(h4)

Can in fact show that if f 2 C2K+1
then

I = QCT + c̃2h
2
+ c̃4h

4
+ c̃6h

6
+ . . . + c̃2Kh

2K
+ O(h2K+1

)

Suggests the following strategy:

(1) I = QCT (h) + c̃2h
2
+ c̃4h

4
+ c̃6h

6
+ . . .

(2) I = QCT (2h) + c̃2(2h)
2
+ c̃4(2h)

4
+ c̃6(2h)

6
+ . . .

Take 4 ⇥(1)-(2) (eliminate O(h2
) term):

4I � I = 4QCT (h) �QCT (2h) + c04h
4
+ c06h

6
+ . . .

I =

4

3

QCT (h) �
1

3

QCT (2h) + ĉ4h
4
+ ĉ6h

6
+ . . .

= QS(2h) + ĉ4h
4
+ ĉ6h

6
+ h.o.t.

Here, QS(2h) ⌘ 4

3

QCT (h) �
1

3

QCT (2h)

1

Richardson Extrapolation + Composite Trapezoidal Rule

❑  Richardson + Composite Trapezoidal = Composite Simpson
❑  But we never compute it this way.
❑  Just use QCS = (4 QCT(h) – QCT(2h)) / 3
❑  No new function evaluations required!

a = x0 x1 x2 x3 x4 xk = b

h : wj:
h
2 h h h h h h · · · h

2

2h : w̃j:
2h
2 0 2h 0 2h 0 2h · · · 2h

2 (k even)

4
3wj � 1

3w̃j:
h
3

4h
3

2h
3

4h
3

2h
3

4h
3

2h
3 · · · 2h

3

1

Repeated Richardson Extrapolation
(Romberg Integration)

❑  We can repeat the extrapolation process to get rid of the O(h4) term.
❑  And repeat again, to get rid of O(h6) term.

❑  Idea works just as well if errors are of form c1h + c2h2 + c3h3 + … , but
tabular form would involve 2j instead of 4j

T
k,0 = Trapezoidal rule withh = (b� a)/2k

T
k,j

=

4

j T
k,j�1 � T

k�1,j�1

4

j � 1

h T0,0

h/2 T1,0 T1,1

h/4 T2,0 T2,1 T2,2

h/8 T3,0 T3,1 T3,2 T3,3

O(h2) O(h4) O(h6) O(h8)

Repeated Richardson Extrapolation
(Romberg Integration)

❑  We can repeat the extrapolation process to get rid of the O(h4) term.
❑  And repeat again, to get rid of O(h6) term.

Richardson Example

I =

Z 1

0
e

x

dx

Initial values, all created from same 17 values of f(x).

1.859140914229523

1.753931092464825

1.727221904557517

1.720518592164302

1.718841128579994

Using these 5 values, we build the table (extrapolate) to get more precision.

None Round 1 Round 2 Round 3 Round 4

1.859140914229

1.753931092464 1.718861151876

1.727221904557 1.718318841921 1.718282687924

1.720518592164 1.718284154699 1.718281842218 1.718281828794

1.718841128579 1.718281974051 1.718281828675 1.718281828460 1.718281828459

Error for Richardson Extrapolation (aka Romberg integration)

1/h None Round 1 Round 2 Round 3 Round 4

1 1.4086e-01

2 3.5649e-02 5.7932e-04

4 8.9401e-03 3.7013e-05 8.5947e-07

8 2.2368e-03 2.3262e-06 1.3759e-08 3.3549e-10

16 5.5930e-04 1.4559e-07 2.1631e-10 1.3429e-12 3.2419e-14

O(h^2) O(h^2) O(h^4) O(h^6) O(h^8)

Gauss Quadrature Results

n Qn E

2 1.8591e+00 1.4086e-01

3 1.7189e+00 5.7932e-04

4 1.7183e+00 1.0995e-06

5 1.7183e+00 1.1666e-09

6 1.7183e+00 7.8426e-13

7 1.7183e+00 0

1

Richardson Example

I =

Z 1

0
e

x

dx

Initial values, all created from same 17 values of f(x).

1.859140914229523

1.753931092464825

1.727221904557517

1.720518592164302

1.718841128579994

Using these 5 values, we build the table (extrapolate) to get more precision.

None Round 1 Round 2 Round 3 Round 4

1.859140914229

1.753931092464 1.718861151876

1.727221904557 1.718318841921 1.718282687924

1.720518592164 1.718284154699 1.718281842218 1.718281828794

1.718841128579 1.718281974051 1.718281828675 1.718281828460 1.718281828459

Error for Richardson Extrapolation (aka Romberg integration)

1/h None Round 1 Round 2 Round 3 Round 4

1 1.4086e-01

2 3.5649e-02 5.7932e-04

4 8.9401e-03 3.7013e-05 8.5947e-07

8 2.2368e-03 2.3262e-06 1.3759e-08 3.3549e-10

16 5.5930e-04 1.4559e-07 2.1631e-10 1.3429e-12 3.2419e-14

O(h^2) O(h^4) O(h^6) O(h^8) O(h^10)

Gauss Quadrature Results

n Qn E

2 1.8591e+00 1.4086e-01

3 1.7189e+00 5.7932e-04

4 1.7183e+00 1.0995e-06

5 1.7183e+00 1.1666e-09

6 1.7183e+00 7.8426e-13

7 1.7183e+00 0

1

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Richardson Extrapolation
Romberg Integration

Richardson Extrapolation

In many problems, such as numerical integration or
differentiation, approximate value for some quantity is
computed based on some step size

Ideally, we would like to obtain limiting value as step size
approaches zero, but we cannot take step size arbitrarily
small because of excessive cost or rounding error

Based on values for nonzero step sizes, however, we may
be able to estimate value for step size of zero

One way to do this is called Richardson extrapolation

Michael T. Heath Scientific Computing 53 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Richardson Extrapolation
Romberg Integration

Richardson Extrapolation, continued

Let F (h) denote value obtained with step size h

If we compute value of F for some nonzero step sizes, and
if we know theoretical behavior of F (h) as h ! 0, then we
can extrapolate from known values to obtain approximate
value for F (0)

Suppose that

F (h) = a0 + a1h
p
+O(h

r
)

as h ! 0 for some p and r, with r > p

Assume we know values of p and r, but not a0 or a1
(indeed, F (0) = a0 is what we seek)

Michael T. Heath Scientific Computing 54 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Richardson Extrapolation
Romberg Integration

Richardson Extrapolation, continued

Suppose we have computed F for two step sizes, say h

and h/q for some positive integer q

Then we have

F (h) = a0 + a1h
p
+O(h

r
)

F (h/q) = a0 + a1(h/q)
p
+O(h

r
) = a0 + a1q

�p
h

p
+O(h

r
)

This system of two linear equations in two unknowns a0

and a1 is easily solved to obtain

a0 = F (h) +

F (h)� F (h/q)

q

�p � 1

+O(h

r
)

Accuracy of improved value, a0, is O(h

r
)

Michael T. Heath Scientific Computing 55 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Richardson Extrapolation
Romberg Integration

Richardson Extrapolation, continued

Extrapolated value, though improved, is still only
approximate, not exact, and its accuracy is still limited by
step size and arithmetic precision used

If F (h) is known for several values of h, then extrapolation
process can be repeated to produce still more accurate
approximations, up to limitations imposed by
finite-precision arithmetic

Michael T. Heath Scientific Computing 56 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Richardson Extrapolation
Romberg Integration

Example: Richardson Extrapolation

Use Richardson extrapolation to improve accuracy of finite
difference approximation to derivative of function sin(x) at
x = 1

Using first-order accurate forward difference
approximation, we have

F (h) = a0 + a1h+O(h

2
)

so p = 1 and r = 2 in this instance

Using step sizes of h = 0.5 and h/2 = 0.25 (i.e., q = 2), we
obtain

F (h) =

sin(1.5)� sin(1)

0.5

= 0.312048

F (h/2) =

sin(1.25)� sin(1)

0.25

= 0.430055

Michael T. Heath Scientific Computing 57 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Richardson Extrapolation
Romberg Integration

Example, continued

Extrapolated value is then given by

F (0) = a0 = F (h)+

F (h)� F (h/2)

(1/2)� 1

= 2F (h/2)�F (h) = 0.548061

For comparison, correctly rounded result is
cos(1) = 0.540302

< interactive example >

Michael T. Heath Scientific Computing 58 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Richardson Extrapolation
Romberg Integration

Example: Romberg Integration

As another example, evaluate
Z ⇡/2

0
sin(x) dx

Using composite trapezoid rule, we have

F (h) = a0 + a1h
2
+O(h

4
)

so p = 2 and r = 4 in this instance

With h = ⇡/2, F (h) = F (⇡/2) = 0.785398

With q = 2, F (h/2) = F (⇡/4) = 0.948059

Michael T. Heath Scientific Computing 59 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Richardson Extrapolation
Romberg Integration

Example, continued

Extrapolated value is then given by

F (0) = a0 = F (h)+

F (h)� F (h/2)

2

�2 � 1

=

4F (h/2)� F (h)

3

= 1.002280

which is substantially more accurate than values previously
computed (exact answer is 1)

< interactive example >
Michael T. Heath Scientific Computing 60 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Richardson Extrapolation
Romberg Integration

Romberg Integration

Continued Richardson extrapolations using composite
trapezoid rule with successively halved step sizes is called
Romberg integration

It is capable of producing very high accuracy (up to limit
imposed by arithmetic precision) for very smooth
integrands

It is often implemented in automatic (though nonadaptive)
fashion, with extrapolations continuing until change in
successive values falls below specified error tolerance

Michael T. Heath Scientific Computing 61 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Double Integrals

Approaches for evaluating double integrals include

Use automatic one-dimensional quadrature routine for
each dimension, one for outer integral and another for
inner integral

Use product quadrature rule resulting from applying
one-dimensional rule to successive dimensions

Use non-product quadrature rule for regions such as
triangles

Michael T. Heath Scientific Computing 42 / 61

Tensor-Product Integration

• As with interpolation, if domain can be expressed in rectangular form,

then can use tensor-products of 1D interpolants:

Qn =

NX

j=0

NX

i=0

wiwjf(⇠i, ⇠j)

• The weights are just the 1D quadrature weights.

• More complex domains handled by mappings of [-1,1] to more general

shapes and/or by using composite multidomain integration.

1

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Multiple Integrals

To evaluate multiple integrals in higher dimensions, only
generally viable approach is Monte Carlo method

Function is sampled at n points distributed randomly in
domain of integration, and mean of function values is
multiplied by area (or volume, etc.) of domain to obtain
estimate for integral

Error in estimate goes to zero as 1/

p
n, so to gain one

additional decimal digit of accuracy requires increasing n

by factor of 100

For this reason, Monte Carlo calculations of integrals often
require millions of evaluations of integrand

< interactive example >

Michael T. Heath Scientific Computing 43 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Quadrature Rules
Adaptive Quadrature
Other Integration Problems

Multiple Integrals, continued

Monte Carlo method is not competitive for dimensions one
or two, but strength of method is that its convergence rate
is independent of number of dimensions

For example, one million points in six dimensions amounts
to only ten points per dimension, which is much better than
any type of conventional quadrature rule would require for
same level of accuracy

< interactive example >

Michael T. Heath Scientific Computing 44 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Numerical Differentiation
Finite Difference Approximations
Automatic Differentiation

Numerical Differentiation

Differentiation is inherently sensitive, as small
perturbations in data can cause large changes in result

Differentiation is inverse of integration, which is inherently
stable because of its smoothing effect

For example, two functions shown below have very similar
definite integrals but very different derivatives

Michael T. Heath Scientific Computing 47 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Numerical Differentiation
Finite Difference Approximations
Automatic Differentiation

Numerical Differentiation, continued

To approximate derivative of function whose values are
known only at discrete set of points, good approach is to fit
some smooth function to given data and then differentiate
approximating function

If given data are sufficiently smooth, then interpolation may
be appropriate, but if data are noisy, then smoothing
approximating function, such as least squares spline, is
more appropriate

< interactive example >

Michael T. Heath Scientific Computing 48 / 61

Numerical Differentiation Techniques

 Three common approaches for deriving formulas

❑  Taylor series

❑  Taylor series + Richardson extrapolation

❑  Differentiate Lagrange interpolants
❑  Readily programmed, see, e.g., Fornberg’s spectral methods text.

Example Matlab Code

Using Taylor Series to Derive Difference Formulas

Taylor Series:

(1) fj+1 = fj + hf 0
j +

h2

2

f 00
j +

h3

3!

f 000
j +

h4

4!

f (4)
(⇠+)

(2) fj = fj

(3) fj�1 = fj � hf 0
j +

h2

2

f 00
j � h3

3!

f 000
j +

h4

4!

f (4)
(⇠�)

1

Taylor Series:

(1) fj+1 = fj + hf

0
j +

h

2

2

f

00
j +

h

3

3!

f

000
j +

h

4

4!

f

(4)
(⇠+)

(2) fj = fj

(3) fj�1 = fj � hf

0
j +

h

2

2

f

00
j � h

3

3!

f

000
j +

h

4

4!

f

(4)
(⇠�)

Approximation of f

0
j := f

0
(xj):

1

h

[(1)� (2)] :

fj+1 � fj

h

= f

0
j +

h

2

f

00
j + h.o.t.

or

1

2h

[(1)� (3)] :

fj+1 � fj�1

2h

= f

0
j +

h

2

3!

f

000
j + h.o.t.

1

Richardson Extrapolation

�h :
fj+1 � fj

h
= f 0

j + c1h + c2h
2 + c3h

3 + · · ·

�2h :
fj+2 � fj

2h
= f 0

j + c12h + c24h
2 + c38h

3 + · · ·

2�h � �2h =
4fj+1 � 4fj

2h
� fj+2 � fj

2h

=
�3fj + 4fj+1 � fj+2

2h

= f 0j + c̃2h
2 + c̃3h

3 + · · ·

1

�h :
fj+1 � fj

h
= f 0

j + c1h + c2h
2 + c3h

3 + · · ·

�2h :
fj+2 � fj

2h
= f 0

j + c12h + c24h
2 + c38h

3 + · · ·

2�h � �2h =
4fj+1 � 4fj

2h
� fj+2 � fj

2h

=
�3fj + 4fj+1 � fj+2

2h

= f 0
j + c̃2h

2 + c̃3h
3 + · · ·

1

❑  Formula is improved from O(h) to O(h2)

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Numerical Differentiation
Finite Difference Approximations
Automatic Differentiation

Finite Difference Approximations

Given smooth function f : R ! R, we wish to approximate
its first and second derivatives at point x

Consider Taylor series expansions

f(x+ h) = f(x) + f

0
(x)h+

f

00
(x)

2

h

2
+

f

000
(x)

6

h

3
+ · · ·

f(x� h) = f(x)� f

0
(x)h+

f

00
(x)

2

h

2 � f

000
(x)

6

h

3
+ · · ·

Solving for f 0
(x) in first series, obtain forward difference

approximation

f

0
(x) =

f(x+ h)� f(x)

h

� f

00
(x)

2

h+ · · · ⇡ f(x+ h)� f(x)

h

which is first-order accurate since dominant term in
remainder of series is O(h)

Michael T. Heath Scientific Computing 49 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Numerical Differentiation
Finite Difference Approximations
Automatic Differentiation

Finite Difference Approximations, continued

Similarly, from second series derive backward difference

approximation

f

0
(x) =

f(x)� f(x� h)

h

+

f

00
(x)

2

h+ · · ·

⇡ f(x)� f(x� h)

h

which is also first-order accurate
Subtracting second series from first series gives centered

difference approximation

f

0
(x) =

f(x+ h)� f(x� h)

2h

� f

000
(x)

6

h

2
+ · · ·

⇡ f(x+ h)� f(x� h)

2h

which is second-order accurate
Michael T. Heath Scientific Computing 50 / 61

Numerical Integration
Numerical Differentiation
Richardson Extrapolation

Numerical Differentiation
Finite Difference Approximations
Automatic Differentiation

Finite Difference Approximations, continued

Adding both series together gives centered difference

approximation for second derivative

f

00
(x) =

f(x+ h)� 2f(x) + f(x� h)

h

2
� f

(4)
(x)

12

h

2
+ · · ·

⇡ f(x+ h)� 2f(x) + f(x� h)

h

2

which is also second-order accurate

Finite difference approximations can also be derived by
polynomial interpolation, which is less cumbersome than
Taylor series for higher-order accuracy or higher-order
derivatives, and is more easily generalized to unequally
spaced points

< interactive example >

Michael T. Heath Scientific Computing 51 / 61

