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Differential Equations

Differential equations involve derivatives of unknown
solution function

Ordinary differential equation (ODE): all derivatives are
with respect to single independent variable, often
representing time

Solution of differential equation is function in
infinite-dimensional space of functions

Numerical solution of differential equations is based on
finite-dimensional approximation

Differential equation is replaced by algebraic equation
whose solution approximates that of given differential
equation
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Single ODE (IVP) Examples:

• First-order derivative in time - initial value problem.

• y0 =

1

2

y, y(0) = 1 : y(t) = e
1
2 t.

• y0 = �2 � y + y2 + I.C.s (Ricatti Equation example)

• y0 = sin(t) + I.C.s

• y0 = � y + cos(t) + I.C.s

• y0 = e�y
+ I.C.s

• etc.
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System of ODEs 

" dy1
dt

dy2
dt

#
=

"
f1(t, y1, y2)

f2(t, y1, y2)

#
= f(t,y)

y0 :=
dy

dt
= f(t,y)

" dy1
dt

dy2
dt

#

tk

=

"
f1(t, y1, y2)

f2(t, y1, y2)

#

tk

= f(tk,y(tk))

1



System of ODEs:  Solved Numerically 

Given data at tk, find solution at tk+1.

One example,

dy

dt

����
tk

⇡ yk+1 � yk

h(k)
⇡ f(tk,yk)

Yields Euler’s method (a.k.a. Euler forward, “EF”):

yk+1 = yk + h(k)fk

= yk + hfk (constant step-size case)
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Matlab Example:  orbit.m, orbit1.m 
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Order of ODE

Order of ODE is determined by highest-order derivative of
solution function appearing in ODE

ODE with higher-order derivatives can be transformed into
equivalent first-order system

We will discuss numerical solution methods only for
first-order ODEs

Most ODE software is designed to solve only first-order
equations
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(For Initial Value Problems…) 



Ordinary Differential Equations
Numerical Solution of ODEs

Additional Numerical Methods

Differential Equations
Initial Value Problems
Stability

Higher-Order ODEs, continued

For k-th order ODE

y(k)(t) = f(t, y, y0, . . . , y(k�1)
)

define k new unknown functions

u1(t) = y(t), u2(t) = y0(t), . . . , uk(t) = y(k�1)
(t)

Then original ODE is equivalent to first-order system
2

666664

u01(t)
u02(t)

...
u0k�1(t)
u0k(t)

3

777775
=

2

666664

u2(t)
u3(t)

...
uk(t)

f(t, u1, u2, . . . , uk)

3

777775
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Converting Higher Order ODEs to First Order 

Consider example:

yiv = f(t, y, y0, y00, y000)

Let y1 = y, y2 = y0, y3 = y00, and y4 = y000.

d

dt

2

666664

y1

y2

y3

y4

3

777775
=

2

666664

0 1

0 1

0 1

0

3

777775

2

666664

y1

y2

y3

y4

3

777775
+

2

666664

0

0

0

f

3

777775

dy

dt
= Ay + f

1
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Example: Newton’s Second Law

Newton’s Second Law of Motion, F = ma, is second-order
ODE, since acceleration a is second derivative of position
coordinate, which we denote by y

Thus, ODE has form

y00 = F/m

where F and m are force and mass, respectively

Defining u1 = y and u2 = y0 yields equivalent system of
two first-order ODEs


u01
u02

�
=


u2

F/m

�
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Example, continued

We can now use methods for first-order equations to solve
this system

First component of solution u1 is solution y of original
second-order equation

Second component of solution u2 is velocity y0
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Ordinary Differential Equations

General first-order system of ODEs has form

y0
(t) = f(t,y)

where y : R ! Rn, f : Rn+1 ! Rn, and y0
= dy/dt denotes

derivative with respect to t,
2

6664

y01(t)
y02(t)

...
y0n(t)

3

7775
=

2

6664

dy1(t)/dt
dy2(t)/dt

...
dyn(t)/dt

3

7775

Function f is given and we wish to determine unknown
function y satisfying ODE

For simplicity, we will often consider special case of single
scalar ODE, n = 1
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Initial Value Problems

By itself, ODE y0
= f(t,y) does not determine unique

solution function

This is because ODE merely specifies slope y0
(t) of

solution function at each point, but not actual value y(t) at
any point

Infinite family of functions satisfies ODE, in general,
provided f is sufficiently smooth

To single out particular solution, value y0 of solution
function must be specified at some point t0
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y0 is the initial condition. 
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Initial Value Problems, continued

Thus, part of given problem data is requirement that
y(t0) = y0, which determines unique solution to ODE

Because of interpretation of independent variable t as
time, think of t0 as initial time and y0 as initial value

Hence, this is termed initial value problem, or IVP

ODE governs evolution of system in time from its initial
state y0 at time t0 onward, and we seek function y(t) that
describes state of system as function of time
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Example: Initial Value Problem

Consider scalar ODE
y0 = y

Family of solutions is given by y(t) = c et, where c is any
real constant

Imposing initial condition y(t0) = y0 singles out unique
particular solution

For this example, if t0 = 0, then c = y0, which means that
solution is y(t) = y0et
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Example: Initial Value Problem

Family of solutions for ODE y0 = y
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Stability of Solutions

Solution of ODE is

Stable if solutions resulting from perturbations of initial
value remain close to original solution

Asymptotically stable if solutions resulting from
perturbations converge back to original solution

Unstable if solutions resulting from perturbations diverge
away from original solution without bound
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Example: Stable Solutions

Family of solutions for ODE y0 = 1
2
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Closed Orbits are 
another example of 
stable, but not 
asymptotically 
stable ODEs. 
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Example: Asymptotically Stable Solutions

Family of solutions for ODE y0 = �y
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❑  Unstable ODE Example 
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Example: Stability of Solutions

Consider scalar ODE y0 = �y, where � is constant.

Solution is given by y(t) = y0 e�t, where t0 = 0 is initial time
and y(0) = y0 is initial value

For real �
� > 0: all nonzero solutions grow exponentially, so every
solution is unstable
� < 0: all nonzero solutions decay exponentially, so every
solution is not only stable, but asymptotically stable

For complex �

Re(�) > 0: unstable
Re(�) < 0: asymptotically stable
Re(�) = 0: stable but not asymptotically stable
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Most Important Model Problem

• dy

dt
= �y, y(t = 0) = y0.

• Exact solution: y(t) = y0e
�t.

• Note that, yn = y0e
�n�t

, so

yn = y0e
�(tn�1+�t)

= y0e
�tn�1 e��t

= e��t yn�1.

=

˜Gyn�1,

where

˜G is a constant, referred to as the (analytical) growth factor.
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Example: Linear System of ODEs

Linear, homogeneous system of ODEs with constant
coefficients has form

y0
= Ay

where A is n⇥ n matrix, and initial condition is y(0) = y0

Suppose A is diagonalizable, with eigenvalues �i and
corresponding eigenvectors vi, i = 1, . . . , n

Express y0 as linear combination y0 =
Pn

i=1 ↵ivi

Then

y(t) =
nX

i=1

↵ivie
�it

is solution to ODE satisfying initial condition y(0) = y0
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Here, linearity implies A is a constant matrix 
A ≠ A(y).  (Actually, that is also implied by 
the “constant coefficients” qualifier.) 



Eigenvalues and ODEs 

dy

dt
= Jy + f(t)

Assume J = constant and there exist n eigenvectors vj such that

Jvj = �jvj

JV = V ⇤ = (v1 v2 . . .vn)

2

664

�1

. . .

�n

3

775

Then, there exists a set of coe�cients ŷj(t) such that

y =
nX

j=1

vj ŷj () y = V ŷ () ŷ = V �1y

Jy =
nX

j=1

Jvj ŷj =
nX

j=1

�jvj ŷj =
nX

j=1

vj�j ŷj = V ⇤ŷ.

Inserting the expansion y = V ŷ into our ODE...

dy

dt
= Jy + f

d

dt
V ŷ = JV ŷ + V f̂

= V ⇤ŷ + V f̂

Multiply through by V �1:

dŷ

dt
= ⇤ŷ + f̂

1
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= V ⇤ŷ + V f̂

Multiply through by V �1:

dŷ
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Eigenvalues and ODEs 

d

dt

0

@
ŷ1
...
ŷn

1

A =

2

664

�1

. . .

�n

3

775

0

@
ŷ1
...
ŷn

1

A +

0

B@
f̂1
...

f̂n

1

CA

=

0

@
�1ŷ1
...

�nŷn

1

A +

0

B@
f̂1
...

f̂n

1

CA

dŷi
dt

= �iŷi + f̂i, i = 1, . . . , n

• We now have n decoupled systems.

• Numerically, we solve these as the coupled system y = Jy + f .

• The behavior, however, is the same as this decoupled system,
which is easier to understand.

• In particular, stability is governed by the maximum real part of the �is.

yk+1 � yk

�t
= Jyk + fk (h := �t)

V �1 ⇥

yk+1 � yk

�t
= Jyk + fk

i

=) ŷk+1 � ŷk

�t
= ⇤ŷk + f̂k

ŷk+1 = ŷk + �t⇤ŷk + �t̂fk

ŷj,k+1 = (1 + �t�j)ŷj,k + �tf̂j,k

Therefore, forward Euler stability requires

|1 + �t�j| < 1, j = 1, . . . , n

2
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Example, continued

Eigenvalues of A with positive real parts yield
exponentially growing solution components

Eigenvalues with negative real parts yield exponentially
decaying solution components

Eigenvalues with zero real parts (i.e., pure imaginary) yield
oscillatory solution components

Solutions stable if Re(�i)  0 for every eigenvalue, and
asymptotically stable if Re(�i) < 0 for every eigenvalue, but
unstable if Re(�i) > 0 for any eigenvalue
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Stability of Solutions, continued

For general nonlinear system of ODEs y0
= f(t,y),

determining stability of solutions is more complicated

ODE can be linearized locally about solution y(t) by
truncated Taylor series, yielding linear ODE

z0
= Jf (t,y(t)) z

where Jf is Jacobian matrix of f with respect to y

Eigenvalues of Jf determine stability locally, but
conclusions drawn may not be valid globally
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Numerical Solution of ODEs

Analytical solution of ODE is closed-form formula that can
be evaluated at any point t

Numerical solution of ODE is table of approximate values
of solution function at discrete set of points

Numerical solution is generated by simulating behavior of
system governed by ODE

Starting at t0 with given initial value y0, we track trajectory
dictated by ODE

Evaluating f(t0,y0) tells us slope of trajectory at that point

We use this information to predict value y1 of solution at
future time t1 = t0 + h for some suitably chosen time
increment h
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Numerical Solution of ODEs, continued

Approximate solution values are generated step by step in
increments moving across interval in which solution is
sought

In stepping from one discrete point to next, we incur some
error, which means that next approximate solution value
lies on different solution from one we started on

Stability or instability of solutions determines, in part,
whether such errors are magnified or diminished with time
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Numerical Solution of ODEs, continued
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• Two types of stability to consider: 
 • Stability of ODE 
 • Stability of numerical method 

 



Developing Numerical Solution Approaches for ODEs (IVPs) 

❑  Principal considerations: 

❑  Deriving a computable formula for yk+1 , given yk, f(yk,tk)  (and 
perhaps, f(yk-1,tk-1), … ). 

❑  Understanding accuracy as a function of stepsize, h, and function f. 

❑  Understanding stability as a function of stepsize, h, and function f. 



Developing Numerical Solution Approaches for ODEs (IVPs) 

❑  Some methods we’ll encounter: 
❑  Euler’s method (aka Forward Euler) 

❑  Backward Euler 

❑  Trapezoid Method  

❑  Backward difference formulae of order k  (BDFk) 

❑  kth-order Runge-Kutta methods 

❑  … 

❑  These methods are characterized by 
❑  Implicit,  explicit,  semi-implicit 

❑  Stability properties 

❑  Accuracy 

❑   Cost 



Developing Numerical Solution Approaches for ODEs (IVPs) 

❑  Some methods we’ll encounter: 
❑  Euler’s method (aka Forward Euler)    O(h) 

❑  Backward Euler      O(h) 

❑  Trapezoid Method      O(h2) – not L-stableL 

❑  Backward difference formulae of order k  (BDFk)  O(hk) 

❑  kth-order Runge-Kutta methods    O(hk) 

❑  … 

❑  These methods are characterized by 
❑  Implicit,  explicit,  semi-implicit 

❑  Stability properties 

❑  Accuracy 

❑   Cost 
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Euler’s Method
For general system of ODEs y0

= f(t,y), consider Taylor
series

y(t+ h) = y(t) + hy0
(t) +

h2

2

y00
(t) + · · ·

= y(t) + hf(t,y(t)) +
h2

2

y00
(t) + · · ·

Euler’s method results from dropping terms of second and
higher order to obtain approximate solution value

yk+1 = yk + hkf(tk,yk)

Euler’s method advances solution by extrapolating along
straight line whose slope is given by f(tk,yk)

Euler’s method is single-step method because it depends
on information at only one point in time to advance to next
point
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Example: Euler’s Method

Applying Euler’s method to ODE y0 = y with step size h, we
advance solution from time t0 = 0 to time t1 = t0 + h

y1 = y0 + hy00 = y0 + hy0 = (1 + h)y0

Value for solution we obtain at t1 is not exact, y1 6= y(t1)

For example, if t0 = 0, y0 = 1, and h = 0.5, then y1 = 1.5,
whereas exact solution for this initial value is
y(0.5) = exp(0.5) ⇡ 1.649

Thus, y1 lies on different solution from one we started on

Michael T. Heath Scientific Computing 23 / 84



Ordinary Differential Equations
Numerical Solution of ODEs

Additional Numerical Methods

Euler’s Method
Accuracy and Stability
Implicit Methods and Stiffness

Example, continued

To continue numerical solution process, we take another
step from t1 to t2 = t1 + h = 1.0, obtaining
y2 = y1 + hy1 = 1.5 + (0.5)(1.5) = 2.25

Now y2 differs not only from true solution of original
problem at t = 1, y(1) = exp(1) ⇡ 2.718, but it also differs
from solution through previous point (t1, y1), which has
approximate value 2.473 at t = 1

Thus, we have moved to still another solution for this ODE
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Example, continued

For unstable solutions, errors in numerical solution grow with
time
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Where we 
should be. 

Where we 
are. 
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Example, continued

For unstable solutions, errors in numerical solution grow with
time
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Example, continued

For unstable solutions, errors in numerical solution grow with
time
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Example, continued

For unstable solutions, errors in numerical solution grow with
time
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Two sources of error: 
• Error at current step (local error) 
• Error from being on the wrong trajectory    
(accumulated error) 
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Example, continued

For stable solutions, errors in numerical solution may diminish
with time

< interactive example >
Michael T. Heath Scientific Computing 26 / 84
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Example, continued

For unstable solutions, errors in numerical solution grow with
time
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(Local errors are suppressed.) 
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Errors in Numerical Solution of ODEs

Numerical methods for solving ODEs incur two distinct
types of error

Rounding error, which is due to finite precision of
floating-point arithmetic
Truncation error (discretization error ), which is due to
approximation method used and would remain even if all
arithmetic were exact

In practice, truncation error is dominant factor determining
accuracy of numerical solutions of ODEs, so we will
henceforth ignore rounding error
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(Keep in mind, however, that even with a perfect algorithm, round-off is 
an ever-present source of noise in the system – e.g., we must assume 
that all eigenmodes are present, so any unstable mode will grow.) 
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Global Error and Local Error

Truncation error at any point tk can be broken down into

Global error : difference between computed solution and
true solution y(t) passing through initial point (t0,y0)

ek = yk � y(tk)

Local error : error made in one step of numerical method

`k = yk � uk�1(tk)

where uk�1(t) is true solution passing through previous
point (tk�1,yk�1)
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Global Error and Local Error

Truncation error at any point tk can be broken down into

Global error : difference between computed solution and
true solution y(t) passing through initial point (t0,y0)

ek = yk � y(tk)

Local error : error made in one step of numerical method

`k = yk � uk�1(tk)

where uk�1(t) is true solution passing through previous
point (tk�1,yk�1)
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GTE –                      
  Global Truncation Error 

LTE –                      
  Local Truncation Error 
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Global Error and Local Error, continued

Global error is not necessarily sum of local errors

Global error is generally greater than sum of local errors if
solutions are unstable, but may be less than sum if
solutions are stable

Having small global error is what we want, but we can
control only local error directly
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Global Error and Local Error, continued
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Global and Local Error, continued
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Order of Accuracy

Order of accuracy of numerical method is p if

`k = O(hp+1
k )

Then local error per unit step, `k/hk = O(hpk)

Under reasonable conditions, ek = O(hp), where h is
average step size

< interactive example >
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GTE – Global Truncation Error ~ O(hp) 
LTE – Local Truncation Error ~ O(hp+1) 
 

Global Truncation Error is what you expect after final time T = n.h, 
where n=number of steps. 
Making n local errors of size O(hp+1), expect e(T) = O(nhp+1) = T O(hp).  
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Stability

Numerical method is stable if small perturbations do not
cause resulting numerical solutions to diverge from each
other without bound

Such divergence of numerical solutions could be caused
by instability of solution to ODE, but can also be due to
numerical method itself, even when solutions to ODE are
stable
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Stability, Accuracy and Cost of the numerical 
scheme are the primary considerations in the 
development of ODE solvers. 
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Determining Stability and Accuracy

Simple approach to determining stability and accuracy of
numerical method is to apply it to scalar ODE y0 = �y,
where � is (possibly complex) constant

Exact solution is given by y(t) = y0e�t, where y(0) = y0 is
initial condition

Determine stability of numerical method by characterizing
growth of numerical solution

Determine accuracy of numerical method by comparing
exact and numerical solutions
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Example: Euler’s Method

Applying Euler’s method to y0 = �y using fixed step size h,

yk+1 = yk + h�yk = (1 + h�)yk

which means that

yk = (1 + h�)ky0

If Re(�) < 0, exact solution decays to zero as t increases,
as does computed solution if

|1 + h�| < 1

which holds if h� lies inside circle in complex plane of
radius 1 centered at �1

< interactive example >
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Most Important Model Problem

• dy

dt
= �y, y(t = 0) = y0.

• Exact solution: y(t) = y0e
�t.

• Note that, yn = y0e
�n�t, so

yn = y0e
�(tn�1+�t) = y0e

�tn�1 e��t

= e��t yn�1.

= G̃ yn�1,

where G̃ is a constant, referred to as the (analytical) growth factor.

Here, (1 + �h) is
the growth factor.



Recall Eigenvalues and ODEs, Analytical Case 
dy

dt
= Jy + f(t)

Assume J = constant and there exist n eigenvectors vj such that

Jvj = �jvj

JV = V ⇤ = (v1 v2 . . .vn)

2

664

�1

. . .

�n

3

775

Then, there exists a set of coe�cients ŷj(t) such that

y =
nX

j=1

vj ŷj () y = V ŷ () ŷ = V �1y

Jy =
nX

j=1

Jvj ŷj =
nX

j=1

�jvj ŷj

Inserting this expansion into our ODE...

dy

dt
= Jy + f

d

dt
V ŷ = JV ŷ + V f̂

= V ⇤ŷ + V f̂

Multiply through by V �1:

dŷ

dt
= ⇤ŷ + f̂

1



Recall, Eigenvalues and ODEs, Analytical Case 

dy

dt
= Jy + f(t)

Assume J = constant and there exist n eigenvectors vj such that

Jvj = �jvj

JV = V ⇤ = (v1 v2 . . .vn)

2

664

�1

. . .

�n

3

775

Then, there exists a set of coe�cients ŷj(t) such that

y =
nX

j=1

vj ŷj () y = V ŷ () ŷ = V �1y

Jy =
nX

j=1

Jvj ŷj =
nX

j=1

�jvj ŷj

Inserting this expansion into our ODE...

dy

dt
= Jy + f

d

dt
V ŷ = JV ŷ + V f̂

= V ⇤ŷ + V f̂

Multiply through by V �1:

dŷ

dt
= ⇤ŷ + f̂

1



Eigenvalues and ODEs, Analytical Case 

d

dt

0

@
ŷ1
...
ŷn

1

A =

2

664

�1

. . .

�n

3

775

0

@
ŷ1
...
ŷn

1

A +

0

B@
f̂1
...

f̂n

1

CA

=

0

@
�1ŷ1
...

�nŷn

1

A +

0

B@
f̂1
...

f̂n

1

CA

dŷi
dt

= �iŷi + f̂i, i = 1, . . . , n

• We now have n decoupled systems.

• We solve these (numerically) in a coupled fashion.

• The behavior, however, is the same as this decoupled system,
which is easier to understand.

yk+1 � yk

�t
= Jyk + fk (h := �t)

V �1 ⇥

yk+1 � yk

�t
= Jyk + fk

i

=) ŷk+1 � ŷk

�t
= ⇤ŷk + f̂k

ŷk+1 = ŷk + �t⇤ŷk + �t̂fk

ŷj,k+1 = (1 + �t�j)ŷj,k + �tf̂j,k

Therefore, forward Euler stability requires

|1 + �t�j| < 1, j = 1, . . . , n

2



Discrete Case:  Euler Forward Example 

d

dt

0

@
ŷ1
...
ŷn

1

A =

2

664

�1

. . .

�n

3

775

0

@
ŷ1
...
ŷn

1

A +

0

B@
f̂1
...

f̂n

1

CA

=

0

@
�1ŷ1
...

�nŷn

1

A +

0

B@
f̂1
...

f̂n

1

CA

dŷi
dt

= �iŷi + f̂i, i = 1, . . . , n

• We now have n decoupled systems.

• We solve these (numerically) in a coupled fashion.

• The behavior, however, is the same as this decoupled system,
which is easier to understand.

yk+1 � yk

�t
= Jyk + fk (h := �t)

V �1 ⇥

yk+1 � yk

�t
= Jyk + fk

i

=) ŷk+1 � ŷk

�t
= ⇤ŷk + f̂k

ŷk+1 = ŷk + �t⇤ŷk + �t̂fk

ŷj,k+1 = (1 + �t�j)ŷj,k + �tf̂j,k

Therefore, forward Euler stability requires

|1 + �t�j| < 1, j = 1, . . . , n

2



Stability Region for Euler’s Method 

 |                 | 
-2              -1 

Stable 

Unstable 

Region where

|1 + �h| < 1.

1



MATLAB EXAMPLE:   Euler for y’ =  ¸ y   (ef1.m) 

Stable 

Unstable 



Stability Region for Euler’s Method 

 |                 | 
-2              -1 

Stable 

Unstable 

Why complex plane? 



Recall: Orbit Example 

d

dt

 
x

y

!
=

"
0 �1

1 0

#  
x

y

!
= Ay.

dy

dt

= Ay

���A � �I

��� =

�����
�� �1

1 ��

�����

= �

2 + 1 = 0

� = ±i

1

•  Even though ODE involves only reals, the behavior can be 
governed by complex eigenvalues. 
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Euler’s Method, continued

If � is real, then h� must lie in interval (�2, 0), so for � < 0,
we must have

h  � 2

�

for Euler’s method to be stable

Growth factor 1 + h� agrees with series expansion

eh� = 1 + h�+

(h�)2

2

+

(h�)3

6

+ · · ·

through terms of first order in h, so Euler’s method is
first-order accurate
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LTE is O(h2)  ! 
GTE is O(h)  ! 



Relationship between LTE and GTE 

yn = y0 +

Z T

0
f(t, y) dt

• If LTE = O(�t2), then commit O(�t2) error on each step.

• Interested in final error at time t = T = n�t.

• Interested in the final error en := y(tn) � yn in the limit n �! 1, n�t = T fixed.

• Nominally, the final error will be proportional to the sum of the local errors,

en ⇠ C n · LTE ⇠ C n�t2 ⇠ C (n�t)�t ⇠ C T�t

• GTE ⇠ LTE /�t

f 
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Stability of Numerical Methods for ODEs

In general, growth factor depends on

Numerical method, which determines form of growth factor

Step size h

Jacobian Jf , which is determined by particular ODE
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Implicit Methods

Euler’s method is explicit in that it uses only information at
time tk to advance solution to time tk+1

This may seem desirable, but Euler’s method has rather
limited stability region

Larger stability region can be obtained by using information
at time tk+1, which makes method implicit

Simplest example is backward Euler method

yk+1 = yk + hkf(tk+1,yk+1)

Method is implicit because we must evaluate f with
argument yk+1 before we know its value
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Implicit Methods, continued

This means that we must solve algebraic equation to
determine yk+1

Typically, we use iterative method such as Newton’s
method or fixed-point iteration to solve for yk+1

Good starting guess for iteration can be obtained from
explicit method, such as Euler’s method, or from solution at
previous time step

< interactive example >
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Implicit Methods, continued

Given extra trouble and computation in using implicit
method, one might wonder why we bother

Answer is that implicit methods generally have significantly
larger stability region than comparable explicit methods
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•  Increased stability implies we can take (many) fewer 
steps, assuming that accuracy is not compromised 
by the larger stepsize, h. 
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Backward Euler Method

To determine stability of backward Euler, we apply it to
scalar ODE y0 = �y, obtaining

yk+1 = yk + h�yk+1

(1� h�)yk+1 = yk

yk =

✓
1

1� h�

◆k

y0

Thus, for backward Euler to be stable we must have
����

1

1� h�

����  1

which holds for any h > 0 when Re(�) < 0

So stability region for backward Euler method includes
entire left half of complex plane, or interval (�1, 0) if � is
real
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Backward Euler Method

To determine stability of backward Euler, we apply it to
scalar ODE y0 = �y, obtaining

yk+1 = yk + h�yk+1

(1� h�)yk+1 = yk

yk =

✓
1

1� h�

◆k

y0

Thus, for backward Euler to be stable we must have
����

1

1� h�

����  1

which holds for any h > 0 when Re(�) < 0

So stability region for backward Euler method includes
entire left half of complex plane, or interval (�1, 0) if � is
real
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Growth Factor, G 
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Backward Euler Method, continued

Growth factor

1

1� h�
= 1 + h�+ (h�)2 + · · ·

agrees with expansion for e�h through terms of order h, so
backward Euler method is first-order accurate

Growth factor of backward Euler method for general
system of ODEs y0

= f(t,y) is (I � hJf )
�1, whose

spectral radius is less than 1 provided all eigenvalues of
hJf lie outside circle in complex plane of radius 1 centered
at 1

Thus, stability region of backward Euler for general system
of ODEs is entire left half of complex plane
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Stability Region for Backward Euler Method 

 |                 | 
                   1 

Unstable 

Stable 
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Unconditionally Stable Methods

Thus, for computing stable solution backward Euler is
stable for any positive step size, which means that it is
unconditionally stable

Great virtue of unconditionally stable method is that
desired accuracy is only constraint on choice of step size

Thus, we may be able to take much larger steps than for
explicit method of comparable order and attain much
higher overall efficiency despite requiring more
computation per step

Although backward Euler method is unconditionally stable,
its accuracy is only of first order, which severely limits its
usefulness
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Trapezoid Method
Higher-order accuracy can be achieved by averaging Euler
and backward Euler methods to obtain implicit trapezoid
method

yk+1 = yk + hk (f(tk,yk) + f(tk+1,yk+1)) /2

To determine its stability and accuracy, we apply it to scalar
ODE y0 = �y, obtaining

yk+1 = yk + h (�yk + �yk+1) /2

yk =

✓
1 + h�/2

1� h�/2

◆k

y0

Method is stable if ����
1 + h�/2

1� h�/2

���� < 1

which holds for any h > 0 when Re(�) < 0
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Trapezoid Method, continued

Thus, trapezoid method is unconditionally stable

Its growth factor

1 + h�/2

1� h�/2
=

✓
1 +

h�

2

◆ 
1 +

h�

2

+

✓
h�

2

◆2

+

✓
h�

2

◆3

+ · · ·
!

= 1 + h�+

(h�)2

2

+

(h�)3

4

+ · · ·

agrees with expansion of eh� through terms of order h2, so
trapezoid method is second-order accurate

For general system of ODEs y0
= f(t,y), trapezoid

method has growth factor (I +

1
2hJf )(I � 1

2hJf )
�1, whose

spectral radius is less than 1 provided eigenvalues of hJf

lie in left half of complex plane < interactive example >
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Growth Factors for Real  ̧

¸¢t ¸¢t ¸¢t 

G 

❑  Each growth factor approximates  e¸¢t  for ¸¢t à 0 

❑  For EF, |G| is not bounded by 1 

❑  For Trapezoidal Rule, local (small¸¢t) approximation is O(¸¢t2), but     
|G| à -1 as  ¸¢t à -1 .   [ Trapezoid method is not L-stable. ] 

❑  BDF2 will give 2nd-order accuracy, stability, and |G|à0 as ¸¢t à -1 . 

e¸¢t 

G 
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Implicit Methods, continued

We have now seen two examples of implicit methods that
are unconditionally stable, but not all implicit methods have
this property

Implicit methods generally have larger stability regions
than explicit methods, but allowable step size is not always
unlimited

Implicitness alone is not sufficient to guarantee stability
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Example:  backward difference formula   
       of order 3 or higher 



BDFk Formulas:  GTE = O(hk) 

= O(nfinal∆t2)

= O(∆tT )

= O(∆t)T.

We refer to GTE as the global truncation error. It is the error in the final result at time T . Note
that, if we reduce ∆t, we must increase nfinal = T/∆t so that we compare errors at the same final
time T . Invariably, LTE = ∆tGTE. Moreover, GTE scales as T . Longer time integration thus
implies a need for a smaller truncation error. In the case of EB and EF the GTE is O(∆t), that is,
the methods are first order in time. We would expect therefore that reducing ∆t by a factor of 2
(and doubling the number of timesteps) would reduce the temporal error at time T by a factor of
2.

To generate higher-order methods one has several choices. Here, we consider backward-difference
formulae of order k (BDFk). These methods offer flexibility in terms of order and stability. Al-
though classic BDFk is implicit, we show how they can be combined with extrapolation to develop
explicit or even semi-implicit methods.

The idea behind BDFk is to approximate du
dt at time the current timestep, tn, with a finite

difference formula based on the unknown value, un, and known past values un−1, un−2, . . . , un−k.
One way to generate the finite difference formula is to fit an interpolating polynomial of degree
k through the solution u(t) at time points tn, tn−1, . . . , tn−k and evaluate the derivative of this
polynomial at the current timestep level, tn. The situation is as pictured in Fig. 3. For uniform

∆t, the formulas for k = 1, 2, and 3 are

BDF1: ∂u
∂t

∣

∣

∣

tn
=

un − un−1

∆t
+ O(∆t) (38)

BDF2: ∂u
∂t

∣

∣

∣

tn
=

3un − 4un−1 + un−2

2∆t
+ O(∆t2) (39)

BDF3: ∂u
∂t

∣

∣

∣

tn
=

11un − 18un−1 + 9un−2 − 2un−3

6∆t
+ O(∆t3). (40)

The right hand side of the ODE can either be evaluated directly at time tn, in which case the
method is implicit, or by using kth-order extrapolation.

To illustrate the procedure, we consider the case k=2 using the model problem

du

dt
= g(u, t) + f(u, t). (41)

To begin, evaluate each term at time tn,

du

dt

∣

∣

∣

∣

tn
= g(u, t)|tn + f(u, t)|tn . (42)

and choose a method of approximation for each. For the time derivative, we use the BDF2 for-
mula (39). If g is nonlinear and governing relatively slowly evolving behavior, it might be most
conveniently evaluated explicitly using 2nd-order extrapolation. Conversely, if f is governing fast
behavior, one might need to treat it implicitly. Such an approach gives rise to the following semi-
implict scheme,

3un − 4un−1 + un−2

2∆t
+O(∆t2) =

(

2gn−1 − gn−2 +O(∆t2)
)

+ f(un, tn), (43)

10

❑  Unlike the trapezoidal rule, these methods are L-stable: 
❑  |G|à0 as ¸¢t à -1  

❑  k-th order accurate 
❑  Implicit 
❑  Unconditionally stable only for k · 2      (here, k := order of method) 
❑  Multi-step:  require data from previous timesteps 



Q: Which is stable? 
Which part is unstable? 

bdfk_orbit.m 



Implicit Orbit Example 



Explicit High-Order Methods 

❑  High-order explicit methods are of interest for several reasons: 

❑  Lower cost per step than implicit (but possibly many steps if system 
has disparate timescales, i.e., is stiff --- spring-mass example). 

❑  More accuracy 

❑  For k > 2, encompass part of the imaginary axis near zero, so stable 
for systems having purely imaginary eigenvalues, provided h is 
sufficiently small. 

❑  We’ll look at three classes of high-order explicit methods: 
❑ BDFk / Ext k 
❑  kth-order Adams Bashforth 
❑ Runge-Kutta methods 

❑  Each has pros and cons… 



Higher-Order Explicit Timesteppers:  BDFk/EXTk 

• Idea: evaluate left-hand and right-hand sides at tk+1 to accuracy O(�tk).

dy

dt

����
tk+1

= f(t, y)|tk+1

• Can treat term on the right via kth-order extrapolation.

• For example, for k = 2,

3yk+1 � 4yk + yk�1

2�t
+ O(�t2) = 2fk � fk�1 + O(�t2)

• Solve for yk+1 in terms of known quantities on the right:

yk+1 =

2

3


4yk � yk�1

2

+ �t(2fk � fk�1)

�
+ O(�t3)

• Note that LTE is O(�t3), GTE=O(�t2).

1



❑  Here we see that the k=3 curve encompasses part of the imaginary axis near 
the origin of the ¸¢t plane, which is important for stability of non-dissipative 
systems. 

Stable 



Higher-Order Explicit Timesteppers: kth-order Adams-Bashforth 

• Adams-Bashforth methods are a somewhat simpler alternative to BDFk/EXTk.

• Time advancement via integration:

yk+1 = yk +

Z tk+1

tk

f(t,y) dt

• AB1:

Z tk+1

tk

f(t,y) dt = hkfk + O(h2
)

• AB2:

Z tk+1

tk

f(t,y) dt = hkfk +

h2
k

2


fk � fk�1

hk�1

�
+ O(h3

)

= h

✓
3

2

fk � 1

2

fk�1

◆
+ O(h3

) (if h is constant)

• AB3:

Z tk+1

tk

f(t,y) dt = h

✓
23

12

fk � 16

12

fk�1 +

5

12

fk�2

◆
+ O(h4

) (if h is constant)

• LTE for ABm is O(hm+1
). GTE for ABm is O(hm

).

1



8
1 

Stability of Various Timesteppers 

❑  Derived from model problem 

❑  Stability regions shown in the λΔt plane  (stable inside the curves) 

~ 0.72 

n To make effective use of this plot, we need to know 
something about the eigenvalues λ of the Jacobian. 

n But first, How are these plots generated? 



8
2 

Determining the Neutral-Stability Curve 



8
3 

Matlab Code:  stab.m 
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Stiff Differential Equations

Asymptotically stable solutions converge with time, and
this has favorable property of damping errors in numerical
solution

But if convergence of solutions is too rapid, then difficulties
of different type may arise

Such ODE is said to be stiff
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Stiff System Examples 

❑  Spring-mass system 

❑  Nonlinear ODE 

❑  Falling Particle in a viscous fluid 

My00
= �Ky

y0 = �1000y + cos(y3)

1

My00
= �Ky

y0 = �1000y + cos(y3)

1



 dy
dt

dv
dt

!
=

"
0 1

0 s

#  
y

v

!
+

 
0

g

!

Stokes drag for small particles:

Fd = �6⇡µrv

1

m
Fd = � 6⇡µrv

4
3⇡r

3⇢p
= � 18µ

⇢pd2
v =: sv, d = 2r = 2⇥ radius

Eigenvalues of the system:

0 = |J � I�| =

�����
�� 1

0 s� �

����� = �(� � s)

� = 0, � = s.

1

Stiffness Example: Drag on a Falling Particle 



Stiffness Example: Drag on a Falling Particle 

• Consider acceleration of falling particle,

y = position

v =

dy

dt
= velocity

1

m
F
net

=

dv

dt
= acceleration

• Equation of motion:

 dy
dt

dv
dt

!
=

"
0 1

0 s

#  
y

v

!
+

 
0

g

!

• Stokes drag for small particles:

Fd = �6⇡µrv

1

m
Fd = � 6⇡µrv

4
3⇡r

3⇢p
= � 18µ

⇢pd2
v =: sv,

where d = 2r = particle diameter.

• Eigenvalues of the system:

0 = |J � I�| =

�����
�� 1

0 s� �

����� = �(� � s)

� = 0, � = s.

1



• Consider acceleration of falling particle,

y = position

v =

dy

dt
= velocity

1

m
F
net

=

dv

dt
= acceleration

• Equation of motion:

 dy
dt

dv
dt

!
=

"
0 1

0 s
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y

v

!
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0

g

!

• Stokes drag for small particles:

Fd = �6⇡µrv

1

m
Fd = � 6⇡µrv

4
3⇡r

3⇢p
= � 18µ

⇢pd2
v =: sv,

where d = 2r = particle diameter.

• Eigenvalues of the system:

0 = |J � I�| =

�����
�� 1

0 s� �

����� = �(� � s)

� = 0, � = s.

1

Stiffness Example: Drag on a Falling Particle 



 Falling Particle Using Euler Forward 

s=50 

80 

180 

205 

s=50 
80 

180 

205 (>0) 

Q:  What must the h value be, in this case? 

stokeseb.m 



 Falling Particle Using Euler Backward 

s=50 

80 

180 

205 

s=50 

80 

180 

205 

Note:   Still only O(h) accurate.   Trapezoid or BDF2 would be O(h2) 



Semi-Implicit Methods for Stiff ODEs 

• Recall, for general system of ODES,

y0 = f(t,y),

growth factor for EB is spectral radius (max |�j|) of (I � hJ)�1

• Recall our basic timesteppers for model problem y0 = Jy:

– EF: yk+1 = (I + hJ)yk

– EB: (I � hJ)yk+1 = yk

– Trap: (I � h
2J)yk+1 = (1 + h

2J)yk

• We see that the trapezoidal rule is just a splitting of the Jacobian J .

• We can e↵ect other splittings to get stable schemes that are easier to
solve than the fully-implicit systems (where J = J(yk+1), in general).

1



Semi-Implicit Methods for Stiff ODEs 

• For sti↵ problems can split Jacobian into fast and slow parts

J = Jf + Js

(I � hJf)yk+1 = (I + hJs)yk

• Growth factor is spectral radius

⇢
⇥
(I � hJf)

�1(I + hJs)
⇤

• Often, Jf can be linear and diagonal or a linearization of the
nonlinear system operator.

• Js, treated explicitly, can be nonlinear, nonlocal, nonsymmetric, etc.

1

fast 
part 

slow 
part 



Semi-Implicit Methods for Stiff ODEs 

• Method can be extended to high-order using BDFq/EXTq.

• For example, a 2nd-order BDF/EXT scheme would be:

dy

dt
=

3yk+1 � 4yk + yk�1

2h
+ O(h2)

= Jfyk+1 + (2qk � qk�1) + O(h2)

with qk�j := Js(tk�j,yk�j)yk�j.

• One can rearrange to solve for yk+1. The system is of the form
✓
3I +

2h

3
Jf

◆
yk+1 = g

• This scheme can be relatively stable and 2nd-order accurate.

1



Ordinary Differential Equations
Numerical Solution of ODEs

Additional Numerical Methods

Single-Step Methods
Extrapolation Methods
Multistep Methods

Runge-Kutta Methods

Runge-Kutta methods are single-step methods similar in
motivation to Taylor series methods, but they do not require
computation of higher derivatives

Instead, Runge-Kutta methods simulate effect of higher
derivatives by evaluating f several times between tk and
tk+1

Simplest example is second-order Heun’s method

yk+1 = yk +
hk
2

(k1 + k2)

where

k1 = f(tk,yk)

k2 = f(tk + hk,yk + hkk1)
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Runge-Kutta Methods, continued

Heun’s method is analogous to implicit trapezoid method,
but remains explicit by using Euler prediction yk + hkk1

instead of y(tk+1) in evaluating f at tk+1

Best known Runge-Kutta method is classical fourth-order
scheme

yk+1 = yk +
hk
6

(k1 + 2k2 + 2k3 + k4)

where

k1 = f(tk,yk)

k2 = f(tk + hk/2,yk + (hk/2)k1)

k3 = f(tk + hk/2,yk + (hk/2)k2)

k4 = f(tk + hk,yk + hkk3)

< interactive example >
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Stability Regions for RK1—4 

~ 2.828 

❑  RK4 stability region on 
imaginary axis extends 
about 4x higher than for 
AB3 or BDF3/EXT3 

❑  Cost is 4 function 
evaluations per step 
instead of 1 

❑  Method is 4th order 

❑  Method is self-starting 
(good for variable 
timestep) 



Derivation of Stability Region  

• Begin with f(y) = �y.

• Expand all terms in the time advancement scheme.

• Gives the growth factor G.

• Set G = ei✓ and solve for �h.
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Runge-Kutta Methods, continued

To proceed to time tk+1, Runge-Kutta methods require no
history of solution prior to time tk, which makes them
self-starting at beginning of integration, and also makes it
easy to change step size during integration

These facts also make Runge-Kutta methods relatively
easy to program, which accounts in part for their popularity

Unfortunately, classical Runge-Kutta methods provide no
error estimate on which to base choice of step size
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Runge-Kutta Methods, continued

Fehlberg devised embedded Runge-Kutta method that
uses six function evaluations per step to produce both
fifth-order and fourth-order estimates of solution, whose
difference provides estimate for local error

Another embedded Runge-Kutta method is due to
Dormand and Prince

This approach has led to automatic Runge-Kutta solvers
that are effective for many problems, but which are
relatively inefficient for stiff problems or when very high
accuracy is required

It is possible, however, to define implicit Runge-Kutta
methods with superior stability properties that are suitable
for solving stiff ODEs
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Time Step Selection 

❑  Assuming ¢t satisfies the stability criteria, can also choose ¢t 
based on accuracy by estimating the LTE at each step. 

❑  Common way to estimate with, say, RK4 scheme, is to take a step 
with size ¢t  and another pair of steps with size ¢t/2. 

❑  The difference gives an estimate of LTE (for step size ¢t/2). 

❑  If  GTE ~  LTE*T/¢t, and LTE ~ C ¢t5, solve for ¢t such that you will 
realize the desired final error. 

❑  Self-starting (i.e., multistage) methods such as RK are well-suited 
to this strategy. 



Summary of Methods / Properties 

• Multistep methods of order > 2 require special starting procedures

• Multistage (e.g., RKq) methods are self-starting and easy to change stepsize h.

• Multistage methods are attractive for automated stepsize selection.

• Be sure to understand the stability diagrams of these methods.

– Left, or right side of complex �h plane?

– Does it include Im. axis? If so, where does it cut?

– Where does it cut the real axis?

Method Implementation LTE GTE Comments

EF yk+1 = yk + hfk O(h2) O(h) explicit

EB yk+1 = yk + hfk+1 O(h2) O(h) implicit/stable

Trap yk+1 = yk +
h
2 (fk + fk+1) O(h3) O(h2) implicit/stable (but not L-stable)

BDFq interpolation of yk�j O(hq+1
) O(hq) multistep, implicit,stable for q < 3

BDFq/EXTq interpolation of yk�j , fk�j O(hq+1
) O(hq) multistep, extends to semi-implicit

ABq integration over [tk, tk+1] O(hq+1
) O(hq) multistep, explicit, captures Im. axis for q=3

RKq integration over [tk, tk+1] O(hq+1
) O(hq) multistage explicit, easy to start

Extrapolation extends methods above implicit or explicit
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Example: Stiff ODE

Consider scalar ODE

y0 = �100y + 100t+ 101

with initial condition y(0) = 1

General solution is y(t) = 1 + t+ ce�100t, and particular
solution satisfying initial condition is y(t) = 1 + t
(i.e., c = 0)

Since solution is linear, Euler’s method is theoretically
exact for this problem

However, to illustrate effect of using finite precision
arithmetic, let us perturb initial value slightly
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Example, continued

Euler’s method bases its projection on derivative at current
point, and resulting large value causes numerical solution
to diverge radically from desired solution

Jacobian for this ODE is Jf = �100, so stability condition
for Euler’s method requires step size h < 0.02, which we
are violating
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Multistep Methods

Multistep methods use information at more than one
previous point to estimate solution at next point

Linear multistep methods have form

yk+1 =

mX

i=1

↵iyk+1�i + h
mX

i=0

�if(tk+1�i,yk+1�i)

Parameters ↵i and �i are determined by polynomial
interpolation

If �0 = 0, method is explicit, but if �0 6= 0, method is implicit

Implicit methods are usually more accurate and stable than
explicit methods, but require starting guess for yk+1
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Examples: Multistep Methods

Simplest second-order accurate explicit two-step method is

yk+1 = yk +
h

2

(3y0
k � y0

k�1)

Simplest second-order accurate implicit method is
trapezoid method

yk+1 = yk +
h

2

(y0
k+1 + y0

k)

One of most popular pairs of multistep methods is explicit
fourth-order Adams-Bashforth predictor

yk+1 = yk +
h

24

(55y0
k � 59y0

k�1 + 37y0
k�2 � 9y0

k�3)

and implicit fourth-order Adams-Moulton corrector

yk+1 = yk +
h

24

(9y0
k+1 + 19y0

k � 5y0
k�1 + y0

k�2)
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Examples: Multistep Methods

Backward differentiation formulas form another important
family of implicit multistep methods

BDF methods, typified by popular formula

yk+1 =
1

11

(18yk � 9yk�1 + 2yk�2) +
6h

11

y0
k+1

are effective for solving stiff ODEs

< interactive example >
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Multistep Adams Methods

Stability and accuracy of some Adams methods are
summarized below

Stability threshold indicates left endpoint of stability interval
for scalar ODE
Error constant indicates coefficient of hp+1 term in local
truncation error, where p is order of method

Explicit Methods
Stability Error

Order threshold constant
1 �2 1/2
2 �1 5/12
3 �6/11 3/8
4 �3/10 251/720

Implicit Methods
Stability Error

Order threshold constant
1 �1 �1/2
2 �1 �1/12
3 �6 �1/24
4 �3 �19/720

Implicit methods are both more stable and more accurate
than corresponding explicit methods of same order
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Properties of Multistep Methods

They are not self-starting, since several previous values of
yk are needed initially

Changing step size is complicated, since interpolation
formulas are most conveniently based on equally spaced
intervals for several consecutive points

Good local error estimate can be determined from
difference between predictor and corrector

They are relatively complicated to program

Being based on interpolation, they can efficiently provide
solution values at output points other than integration
points
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Properties of Multistep, continued

Implicit methods have much greater region of stability than
explicit methods, but must be iterated to convergence to
enjoy this benefit fully

PECE scheme is actually explicit, though in a somewhat
complicated way

Although implicit methods are more stable than explicit
methods, they are still not necessarily unconditionally
stable

No multistep method of greater than second order is
unconditionally stable, even if it is implicit

Properly designed implicit multistep method can be very
effective for solving stiff ODEs
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Summary of Methods / Properties 
Method Implementation LTE GTE Comments

EF yk+1 = yk + hfk O(h2) O(h) explicit

EB yk+1 = yk + hfk+1 O(h2) O(h) implicit/stable

Trap yk+1 = yk +
h
2 (fk + fk+1) O(h3) O(h2) implicit/stable

BDFq interpolation of yk�j O(hq+1
) O(hq) multistep, implicit,stable for q < 3

BDFq/EXTq interpolation of yk�j , fk�j O(hq+1
) O(hq) multistep, extends to semi-implicit

ABq integration over [tk, tk+1] O(hq+1
) O(hq) multistep, explicit, captures Im. axis for q=3

RKq integration over [tk, tk+1] O(hq+1
) O(hq) multistage explicit, easy to start

Extrapolation extends methods above implicit or explicit
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