Outline

Q Partial Differential Equations
e Numerical Methods for PDEs

e Sparse Linear Systems

1

Michael T. Heath Scientific Computing

Some Distinguishing Features of PDEs

e Interaction of scales.
— e.g., often cannot let Az — 0 unless At — 0 fast enough.
e Size of the systems.

— Time-dependent: solve Ax = b Ny, > 1 times.

— Multiple space dimensions, d > 1: A € R"™™"
— n = N9 N := number of points in each direction.
— System bandwidth is O(N91) > 1.
— Systems are typically sparse.

— Iterative solvers important, particularly for d > 2.

Partial Differential Equations Partial Differential Equations
Characteristics
Classification

Partial Differential Equations

@ Fartial differential equations (PDEs) involve partial
derivatives with respect to more than one independent
variable

@ Independent variables typically include one or more space
dimensions and possibly time dimension as well

@ More dimensions complicate problem formulation: we can
have pure initial value problem, pure boundary value
problem, or mixture of both

@ Equation and boundary data may be defined over irregular
domain

T

Michael T. Heath Scientific Computing 3/105

Partial Differential Equations Partial Differential Equations
Characteristics
Classification

Partial Differential Equations, continued

@ For simplicity, we will deal only with single PDEs (as
opposed to systems of several PDEs) with only two
iIndependent variables, either

e two space variables, denoted by = and y, or

@ one space variable denoted by x and one time variable
denoted by ¢

@ Partial derivatives with respect to independent variables
are denoted by subscripts, for example

@ uy = Odu/0t
@ Uy = 0%u/0xdy

i

Michael T. Heath Scientific Computing 4/105

Partial Differential Equations Partial Differential Equations
Characteristics
Classification

Classification of PDEs

@ Order of PDE is order of highest-order partial derivative
appearing in equation

@ For example, advection equation is first order w; = —cu,

@ Important second-order PDEs include

@ Heat equation: u; = gy

o Wave equation: uy = Ugy

e Laplace equation: ugy + Uyy =0

1

Michael T. Heath Scientific Computing

Partial Differential Equations Partial Differential Equations
Characteristics
Classification

Classification of PDEs, continued

@ Second-order linear PDEs of general form
AUgy + OUgy + CUyy + dug +euy + fu+g =10

are classified by value of discriminant b* — 4ac

@ b? — 4ac > 0: hyperbolic (e.g., wave equation)
@ b’ — dac = 0: parabolic (e.g., heat equation)

@ b? — 4dac < 0: elliptic (e.g., Laplace equation)

1

Michael T. Heath Scientific Computing 9/105

Partial Differential Equations Partial Differential Equations
Characteristics
Classification

Classification of PDEs, continued

Classification of more general PDEs is not so clean and simple,
but roughly speaking

@ Hyperbolic PDEs describe time-dependent, conservative
physical processes, such as convection, that are not
evolving toward steady state

@ Parabolic PDEs describe time-dependent, dissipative
physical processes, such as diffusion, that are evolving
toward steady state

@ Elliptic PDEs describe processes that have already
reached steady state, and hence are time-independent

1

Michael T. Heath Scientific Computing 10/ 105

Time-Dependent Problems

Numerical Methods for PDEs Time-Independent Problems

Time-Dependent Problems

@ Time-dependent PDEs usually involve both initial values
and boundary values

t
b b
O 0]
u u
n n
d d
r . r
y problem domain y
% %
a a
]]
u u
e e
S S
T ==~
0 initial values L T

Michael T. Heath Scientific Computing 11/105

Time-Dependent Problems

Numerical Methods for PDEs Time-Independent Problems

Time-Dependent Problems

@ Time-dependent PDEs usually involve both initial values
and boundary values

t
b b
" O O
Time ¥ Space ¥
n n
d 8 p d
r . -
y problem domain y
A% vV
a a
| I
u u
¢ C
S S
. .. == I
0 initial values L T

Michael T. Heath Scientific Computing 11/105

Partial Differential Equations Partial Differential Equations
Characteristics
Classification

Example: Advection Equation

@ Advection equation
Ut = —CUyg

where c IS nonzero constant

@ Unique solution is determined by initial condition
u(0,) = up(x), —00 < T < 0

where ug Is given function defined on R
@ We seek solution u(t,z) fort > 0and all x € R
@ From chain rule, solution is given by u(t, x) = ug(x — ct)

@ Solution is initial function g shifted by ct to rightif ¢ > 0, or
toleftifc< 0 |

Michael T. Heath Scientific Computing 5/105

Partial Differential Equations Partial Differential Equations
Characteristics
Classification

Example, continued

2.5 3

X

Typical solution of advection equation, with initial function
“advected” (shifted) over time < interactive example > I

Michael T. Heath Scientific Computing

Partial Differential Equations Partial Differential Equations
Characteristics
Classification

Characteristics

@ Characteristics for PDE are level curves of solution

@ For advection equation u; = —cu,, characteristics are
straight lines of slope1/c
t t

ﬁ\ c>0 c <0
b b
0 18
u u
n n
d d
a a
r r
}‘." }‘.'
\Y% v
a a
| |
u u
e e
S S
== == (]

0 initial values 1 0 initial values 1

@ Characteristics determine where boundary conditions can
or must be imposed for problem to be well-posed 1

Michael T. Heath Scientific Computing

Matlab Demo: Convection

c=1l; Tf = 4; % Final time

dx = .01; x=x0:dx:xn; x=x'; n=length(x);
a = -1; b=0; c=1; e = ones(n,1);
C = spdiags([a*e b*e c*e],-1:1, n,n); C = C/(2*dx);

C(n,n)=-C(n,n-1); C(1,1)=C(1l,2); % To drain energy at bdry

CFL = 0.50; dt = CFL*dx/abs(c); nsteps = Tf/dt;

u=exp(-x.*x/.04); hold off; plot(x,u, 'k-"'); hold on;
f=0*u;f1=0*u;

io=floor(nsteps/20); kk=0; t=0;

for k=l:nsteps; t=t+dt;

if k==1; c0=1; cl=0; c2=0; end;
if k==2; c0=3/2; cl=-1/2; c2=0; end;
if k==3; c0=23/12; cl=-16/12; c2=5/12; end;

£2=f1; fl=f; f= -C*u;

rhs
u

cO0*f + cl*fl + c2*£2;
u+dt*rhs;

if mod(k,io)==0; plot(x,u,'r-'); pause(.2); end;
end;

1.2

0.8

0.6

04

0.2

-0.2

Matlab Demo: Convection

T

Very small Ax \2 |
required! | y K

j J-JJ JII / S}.ﬁ. ,-_'}'\'IB l.lh'll' llj IEI'I " kui'.l I'R_K\x'k
- 3' 2 3l 4 2

conv_ab3 cd2.m

Time Stepping for Advection Equation: % = —C%

e Unlike the diffusion equation, which smears out the initial condition
(with high wavenumber components decaying particularly fast), the ad-
vection equation simply moves things around, with no decay.

e This property is evidenced by the spatial operator having purely (or close
to purely) imaginary eigenvalues.

e Preserving high-wavenumber content (in space) for all time makes this
problem particularly challenging.

— There is always some spatial discretization error.

— Its effects accumulate over time (with no decay of the error).

— For sufficiently large final time T any fixed grid (i.e., fixed n) simu-
lation for general problems will eventually have too much error.

— Long time-integrations, therefore, typically require relatively fine
meshes and/or high-order spatial discretizations.

CFL, Eigenvalues, and Stability: Fourier Analysis
e Consider: w; = —cu,, u(0)=wu(1) (periodic BCs)

e Centered difference formula in space:

du; C B
ar —E(ujﬂ—uj_ﬁ = Cul
0 1 —1
—1 0 1
1
C = 1
2Ax
1
1 -1 0
%_J

Periodic Matrix

Periodic Domain

Periodicity: vy = uy,

O o O o O o O O o O O
U A4 A4 A4 A4 A4 A4 A4 A4

e Allows us to run for long times without having to have

a very long domain.

e Allows us to analyze the properties of our spatial discretization.

CFL, Eigenvalues, and Stability: Fourier Analysis

e Consider: wu; = —cu,, u(0)=wu(l) (periodic BCs)

e Centered difference formula in space:

duj C
T T ong e = Ol
o Digenvector: wu; = el2mhr;
e Eigenvalue:
C . . , |
Cu‘j — _E (GZQWkACL‘ . G—ZQWkAZE‘) 6@277]@33]
i (62'27T/<:Aq: . 6—@27T/€A$>
2A\x % J
= >\/€ U
—1ic
A = —sin(2rkAx)

Ax

CFL, Eigenvalues, and Stability: Fourier Analysis

e [igenvalue:

Cgb. — _L <€i27TkA:U . 6—i277/€A3:) €i27rk’:rzj

2Ax
B QZC (€i27TkA.CL’ _ e—iQWkAx)
~ oA 21 Y

—)\ku]'

A = ;—Z;sin(%rkﬁx)

e Figenvalues are purely imaginary, max modulus is

€]
max |Ap| = —
k A Ax
e For constant ¢ and Ax, we define the CFL for the advection
equation as

OFL = Atc] Courant Number

Ax

Courant Number, Eigenvalues, and Stability: Fourier Analysis

e For constant ¢ and Ax, we define the CFL for the advection
equation as

At|c|
AV
e CFL=1 would correspond to a timestep size where a particle

CFL =

moving at speed ¢ would move one grid spacing in a single
timestep.

e LFor centered finite differences in space, CFL=1 also corresponds

AL = 1.

e From our IVP stability analysis, we know that we need
| AAL| < 7236 for AB3 and < 2.828 for RK4.

e This would correspond to CFL < .7236 and 2.828, respectively.

CFL, Eigenvalues, and Stability: Fourier Analysis

J MATLAB EXAMPLE: conv_ab3.m

Advection
e For advection, no decay in physical solution.
e Solution is persistent.
e Numerical method is either dispersive, dissipative, or both.

o If C = —C7, discrete operator is skew-symmetric (imaginary eigenval-
ues) and numerical method has no decay (due to spatial error, at least).

e But it will be dispersive.

e We come back to dissipative shortly.

e Long time-integration — accumulation of error.
e Second-order, O(Ax?), accuracy is not sufficient.

e Modulo boundary conditions (or with periodicity), we can easily extend
our 2nd-order centered-difference formula to O(Ax*) through Richardson
extrapolation.

o Let
C
Chu’j = E[ujﬂ — uj1]
and
C
Conutf; = i (w2 — o)

for j =1,...,n (with wrap for periodic ends).

e Instead of

= - _C
dt e
Nnow usSe
du 4 1
% = — [gChu — §C’2hu] .

e For AB3, say,

uk—i—l _ uk’ 4+ At <§fk . 1_6fk:—1 + Esz2)

12 12 12
4 1
£fF = [gch“k _ g(Jg,mﬁ].

e Don’t re-evaluate f¥1 or f+—2,

e Just re-use the previously computed values.

conv _ab3 cd4.m

Numerical Dissipation

Numerical Dissipation
e So far, we've consider only central difference formulas.

e Upwind discretizations offer more stability, through the introduction of
numerical dissipation.

e You must be very careful about the wind direction!

Alternative Discretizations for Advection

Periodic Domain: uy = u,,

) 1 i) Ti-1 Iy

0]

Lj+1

(0}

e First-order upwinding:

du ; C .
@ - agW T wn) dfe>0
du]' C .

e (Questions:

— What is the order of accuracy?
— Do we preserve skew-symmetry?
— Do we have stability?

— Under which conditions?

e Consider ¢ > 0. With some rearranging, we find:

du; c
P v R Y
c
= oAy (2w — 2uj-)
c
= _ZA:U (Uj+1 — Uj41 T 2Uj - 2Uj—1)
c
= oy (W = wo1) + (S + 20 — uj))
_ Uj+1 — Uj—1 1 cAzx —Uj+1 —|—2u] — Uj—1
2Ax 2 Ax?
= —Cu — v, Au.
e Here, v, = CATx is the numerical diffusivity and the term
— Uy Au

represents numerical dissipation.

cAzx

5+ — 0 as Az — 0 (but only linearly in Ax).

.I/h:

e This method is thus first-order, O(Ax), accurate in space and dissipative.

conv_ab3 b.m demo

1.2

0.3

0.6

0.4

0.2

conv_ab3 b.m demo

e Eigenvalues.

e For our periodic boundary conditions, the eigenvectors are
U: = eiQkaj (Z . /_1)
] - « - .

e With 6 := 2rkAx, we have:

; ot _ =it
_ Y 12mkx;
Cu = 9a; ? [2i]6
= i—ca; sin(2mkAx) e"*™5
Yh i2rka;
vpAu = N2 2 — 2cos(2mkAx)] T
AJ) = —i—c sin(2rkAz) — A”—;Q(z — 2cos(2mkAx)).
T

e Eigenvalues.

e For our periodic boundary conditions, the eigenvectors are
L 127k -
u; = e (1= 4/—1).

e With 0 := 2nkAx, we have:

¢ e — e ok,
Cu_zAx'QZ[2i]6
= L—Cx sin(2mkAx) e"*™
Vh 12rkx;
vpAu = N2 2 — 2cos(2mkAx)]| <™
AJ) = —i—; sin(2rkAx) — Ay—; (2 — 2cos(2mkAz)).
c Im < O,VE IR

e Thus, the eigenvalues are complex and in the left (stable) half of the
complex plane.

e Q: What happensif ¢ < 0 77

e Now, v, < 0 and

AJ) = —i—z sin(2rkAz) — AV—:};?

(2 — 2cos(2rkAx)).

7

S Im > O,VE IR

e Here, we will have very rapid instability.

e We must in this case use the one-sided derivative
du; C :
d—tj == _A—Qj (Uj_|_1 — U]) if ¢ < 0.

e Consider the logic of this statement.

e Suppose we use Euler forward, with ¢ =1 > 0 and At = Ax.

e Then, the update step is

un+1 —u”
A7 = Ju", or
u;?Jrl uy _ —cu? — uj
At Az
implying
1 cAt
u;ﬁ' u;‘ Az (u;L B U’?—1>
e If our CFL = 1, then
n+l1 n
] = uj_q,

which corresponds to a perfect shift of data from the left.

e Being in Illinois, we take our prediction of tomorrow’s weather, u?“,
from today’s weather in lowa, uj_,.

e Not from Indiana (u},).

Time Dependent Problems

e We'll consider two examples: diffusion (heat equation) and advection.

, ou 0u
heat equation: o = Vo2 + BCs and IC
0 0
advection: 8_17: = —ca—z + BCs and IC
f
A
_ b b
Time I Space I
1', problem domain v
I\' \
] |
- -

() initial values [.

Heat Equation:
ou 0%u

E:V@, v >0

e For the heat equation, the solution evolves in the direction of

local curvature.

— If the the solution is locally concave down, u decreases there.

— If the the solution is concave up, u increases.

Heat Equation Heat Equation

0.5)
g

u(x.1)
5
S

[N}

u(t) sin

du

— SINTYX — —VT

dt
du
dt

U

Heat Equation

= e (0)

U Sin T

u(x,t)

Ou
ot

— Very rapid decay.

Heat Equation

du

dt
du

dt

A

U =

u(t) sin 107z

Example Solutions (eigenfunctions): u; = vu,,, u(0) =u(l) =0

~_sinwz = —v1007% 4 sin Tx

= —v1007%4%

u(x,1)

€

1.5

0.5

-0.5

——ulOOWQtiz(O)

Heat Equation

Solution of Partial Differential Equations

e Unsteady Heat Equation:

U = Vg, + qx,t), u(x =0,t) =u(x = L,t) =0, u(z,t =0) =u’(x).

e Discretize in space:

— Finite difference

— Weighted residual technique (FEM, Galerkin + high-order polynomials, etc.)

e Finite Difference Case:

e In ODE form:
du

dt

e Here, Az =1/(n+ 1) and A is the SPD tridiagonal matrix

(2 -1 \
-1 2 -1
1
\ Sy
e Figenvalues:
MA) = Aian ~ cos(knAz)) € (r*(1+O(A2), 4(n +1)?)

e (7#(1 +O0(Az?)), Aiﬁ) .

e Can view this semi-discrete form as a system of ODEs:

du

il f(u) = —vAu + q(x,1).

e Jacobian afi _ —va; J = —vA

de

e Stability is determined by the eigenvalues of J and by the choice of
timestepper.

e Some possible explicit timesteppers
EF: o™ = u* + Atf”

2
AB3: u"! = u* + At (5

16 5
=Y fk: . fk:—l & fk:—2
12 i

12 12

e Stable, as long as A\(J)At in the stability region.

e Stability:

2V
e \(J)=—-vAA) = A (1 — coskmAx) .
e Worst case is AT ~ 4_V _
Ax?
Stability Regions, EF, AB2, AB3.
e For Euler forward (EF), require ! , . ' ,
IAtA(T)| < 2 ol
or
2A 1> Ax?
At < —_— 0.8
Ay 20

1
0.5

=
ok
=

which is a very severe timestep restriction.

e Question:
What is the mazimum allowable timestep size for ABS3 in this case?

e Question:
What is the marimum allowable timestep size for ABS3 in this case?

Stability Regions, EF, AB2, ABS3.

0.8

0.6

0.2+

-0.2 -

04 -

-0.8 -

e Severity of explicit timestep restriction:

— Suppose v = 1 and you want error ~ 107°.
— Ax =~ 1073
— At~ 107° just for stability.

e This is an example of a stiff system.

e High wavenumbers (A(A)) are uninteresting but restrict the timestep
size.

e For this reason, the heat equation is most often treated implicitly.

e Possible Implicit Approaches:

EB
= f(u) Trapezoid (aka Crank-Nicolson)
BDF2 or BDF3

du
dt

e Examples:

EB: u" = u" + At[-v AU + q(x,t")]

CN: = + (—VAu]"‘jJr1 + g" — vAU" + qk)

>
~
DO | —

30kt — Ayk k—1
BDF2: 2O 2Aut TW AU 4 gx, £)

e B Example:
uk—i—l 4+ VAtAuk—i—l _ uk + Atqk—i—l
I + vAtAJu*™ = u¥ + Atgt!
Hu™*' = ub + Atq*!
e Here, H := [I + vAtA] is SPD, tridiagonal, and strongly diagonally
dominant. (In all number of space dimensions.)
e Hu = f is easier to solve than Au =f.

e Jacobi- (diagonal-) preconditioned conjugate gradient iteration is often
the best choice of solver, particularly in higher space dimensions.

e Note that all the implicit solvers end up with the form Hu = f and
generally have the same costs for the linear heat equation considered
here.

e Note that CN (aka trapezoid method) is not L-stable and will have po-
tential difficulties noted in our discussion of IVPs.

e Discretization Based on Weighted Residual Technique in Space

e Coming back to the heat equation (with BCs/ICs),
Ut = VlUgy T+ q(l’,t),

e WRT - residual orthogonal to test functions

/v(l/um + q(z,t) — w)dr = 0 VoX;'.
o If o = Z u;(t) ¢j(z) and v = ¢;(x), then
j=1

ou - du
LHS: /va dr = (jzl Qi®; da:) u;(t) = BE?

with the mass matriz B having entries

Bi; = /gbi(ac)gbj(x)dx.

e On the right, we have

2
RHS = v v@dx -+ /qux
Ox?

ov Ou

e Setting v = ¢; and u =) . p;u;(1),

RHS = —VZ </ Cj;iz Cf;il dx) w;(t) + /Qbide

e In summary, the WRT formulation is, Find u(x,t) € X such that,

ou Ov Ou N
/Uadaz = —v %%dx%—/qux Vv e Xy,
which leads to the ODE
d
Bd_ltl = —vAu + b, plus initial condition u(t = 0) = u’.

e In standard form,

d
d—? = —vBtAu + B7lb,

e Stability is thus governed by A(J) = —vA(B™tA), not just —vA(A).

e Presence of B in front of Cfi—‘tl must not be ignored.

e Choice of timestepper motivated by same concerns as for finite-differences:
= [A(J)] ~ O(Az?)
— Implicit timestepping generally preferred
— SPD systems

— Jacobi (diagonal) preconditioned conjugate gradient iteration is gen-
erally the solver of choice.

Time Stepping for Diffusion Equation:

e Recall, with boundary conditions u(0) = u(1) = 0, the finite difference
operator

1%
Au = =5 fujn — uy — uj]

with h :=1/(n + 1) has eigenvalues in the interval [0, M| with

2U
M = max WS max ﬁ[l — coskmh] ~ 3V
e Our ODE is u; = —Au, so we are concerned with —\.

e With Euler Forward, we require |[AAt| < 2 for stability,

- — At<%2u

— no matter how smooth the initial condition.

e This intrinsic stiffness motivates the use of implicit methods for the heat
equation (BDF2 is a good one).

e matlab example: heatld.m

heatld ef'm and heatld eb.m and heatld cn.m

Steady State Problems

- Heat equation evolves to a steady state:
u=vu, +q(x) [+BCsandIC]

J After waiting long enough, u(x,t=c0) satisfies:
-vu, =q(x) [+BCs]

J In 2D, we have:
-v(Uy *+ Uy) =q(x) [+BCs]

Example: Poisson Equation in 2D

0%u 0%u ,
__<ax2.+ 8y2) = f(z,y)inQ

o0 u = 0onof?

()

u =20
e Ex 1: If f(z,y) = sinmx sinmy,

1 . :
u(z,y) = 52 sinme sinmy
o Ex 2: If f(z,y) = 1,
(r.y) = "Oz"f 16 o ko i]
u(x,y) = TR+) sin kwx sinlmy.
k,lodd

— Q: How large must k and [be for “exact” solution to be correct to €,; 7

— Spectral collocation would yield ©u = Upyqct £ € by N =~ 15.

Numerical Solution:

ny + 1

4

Ui—1,5 Ui Uit1,5

j=0

i=0 1 2 3 4 9ny+1

“5-point finite-difference stencil”

a banded system matrix for u.

-

Here, the unknowns are u = [uyq, usq, . ..

Finite Differences

82U 1 82u — Uit1,5 2uij Ui—1,5
ox? 0y? Ax?
Ui j41 — 2Uj5
Ay?
1 =1...n,
jg=1...n

Uy |

This particular (so-called natural or lexicographical) ordering gives rise to

e Asin the 1D case, the error is O(Az?) + O(Ay?) = O(h?) if we take Az = Ay =: h.

e Assuming for simplicity that N = n, = n,, we have n = N? unknowns.

e For 4,5 € [1,..., N]?, the governing finite difference equations are

<ui+1,j — 2y Uiy

Az?

Wij1 — 25+ uij—1\
+ Ay = fij-

e Assuming a lexicographical ordering in which the i- (z-) index advances fastest, the

system matrix has the form

4 -1
-1 4

-1

-1

-1
-1

Ugq J11
Ugy fa1
Un1 a1
Uyg fi2
Ugo fao
UN2 Ino
Uy N fin
UoN fon
UNN Inn
u f

e The system matrix A is

— sparse, with 5 nonzeros per row (good)
— and has a bandwith N (bad).

e The difficulty is that solving Au = f using Gaussian elimination results in signifcant
fill— each of the factors L and U have N® = n3/2? nonzeros.

e Worse, for 3D problems with N* unknowns, u = [u111, U211, . , Unypnym.), A 1S

— sparse, with 7 nonzeros per row (good)
— and has a bandwith N? (awful).

e In 3D, LU decomposition yields N°=n?3 nonzeros in L and U.

e The situation can be rescued in 2D with a reordering of the unknowns (e.g., via nested-
dissection) to yield O(nlogn) nonzeros in L and U.

e In 3D, nested-dissection yields O(n3/?) nonzeros in the factors. Direct solution is not
scalable for more than two space dimensions.

e The following Matlab examples illustrate the issue of fill:

— fd_poisson_2d.m
— fd_poisson_3d.m

20

301

40t

S0

60

0

80

Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering

SpyA)

.
) %
.... H o‘.o
o... %.%
.... R o‘.o
*, A
*, 5
*, 5
*, 5
*, 5
.
%... .%.
... %.
o.. %.
*, 5
*, -
*, 5 |
%.% -
.
.%. H
.l... ..._
o...
1 ‘ | | I ‘ T..
10 20 30 40 *) FU 80
=
| Etrorandnnz ws N
10 l
10k ‘
10° ‘
10k -
10" g -
10! L
10'E ‘
10k ‘
: error — 2D, 3D
102k M ; _
,_*é’f.?#.: =
| _a__e&ri"::{’
105 |
10 | |

spiL)

0 10 20 30 40 50 60 70 a0
nz=737

e As expected, the error scales like h? ~ 1/N? in both 2D and 3D.
e The resepctive storage costs (and work per rhs) are ~ N3 and N°.

e Alternative orderings are asymptotically better, but the

constants tend to be large.

woo}

2000 ¢

3000

4000

5000t

6000

Matrix-Fill for 2D Poisson, symamd Ordering

spyA(p,pl)
T
4
;
I -': I‘
P
5
(£
'-.“‘.1"3? .
- §
} o
P : .
- .1 i
5
- b]
s f
11
1000 2000 3000 2000 5000 6000
nz= 31680

Etrorand nnz vs M, symarmd Ordering

e error — 2D

S

-‘t:‘E*EH\:
Seng
S

10 10°

Yl

spyiL)
0 .
woo |
: 0.9]
0.8
2000 | 07
0.6
3000 1 0547
= 04
et s ST W
- 0.3]
4000 | 0.2]
2 0.1
5000 |- .] []’> o
0 L -
T '.ﬁ\l‘“\u 1
- ‘f\‘i\} %ﬂ"‘._ MRS, o
6000 | . 04 i qtﬁmml\\ 0
bozeas gy o™t - | aema e R L ‘ t 0.4
0 1000 2000 3000 4000 5000 6000 0.2

nz= 114954

We see for N = 80 (n = 6400) a 5x reduction in number
of nonzeros by reording with matlab’s symamd function.

The requirements for indirect addressing to access elements
of the complacty-stored matrix further adds to overhead.

Gains tend to be realized only for very large N and are
even less beneficial in 3D.

Despite this, it’s still a reasonable idea to reorder
in matlab because it’s available and easy to use.

Iterative Solvers

e The curse of dimensionality for d > 2 resulted in a move towards iterative (rather
than direct-, LU-based) linear solvers once computers became fast enough to tackle 3D
problems in the mid-80s.

e With iterative solvers, factorization
Au = f —= u =AY =U'Lf
is replaced by, say,
Wy = u, + M - Auy),
which only requires matrix-vector products.

With e, := u — uy, we have

€ri1 = (I — M_lA) ey, (as we’ve seen before).

This is known as Richardson iteration.

For the particular case M = D = diag(A), it is Jacobi iteration.

We can derive Jacobi iteration (and multigrid by looking at a parabolic PDE, known as
the (unsteady) heat equation. (The Poisson equation is sometimes referred to as the
steady-state heat equation.)

The intrinsic advantage of iterative solvers is that there is no fill associated with matrix
factorization.

Often one does not even construct the matrix. Rather, we simply evaluate the residual
r, :=f — Auy, and set up = up + M 'ry.

For a sparse matriz A, the operation count is O(n) per iteration.

Assuming the preconditioner cost is also sparse, the overall cost is O(n kyay), Where
kmax 1 the number of iterations required to reach a desired tolerance.

The choice of iteration (Richardson, conjugate gradient, GMRES) can greatly influence

kmax-
Even more significant is the choice of M.

Usually, one seeks an M such that the cost of solving Mz = r is O(n) and that
kmax = O(1). That is, the iteration count is bounded, independent of n.

The overall algorithm is therefore O(n), which is optimal.

Iterative Solvers - Linear Elliptic Problems

e PDEs give rise to large sparse linear systems of the form
Au =f.

Here, we'll take A to be the (SPD) matrix arising from finite differences
applied to the Poisson equation

0%u 0%u 9
_<@+a—y2> — f(xay> x??JE[O?l]? U—OODaQ

ox? oy?), T

e Assuming uniform spacing in x and y we have

2 2
07U _ Wip1y — iy +Uicyy 0 07U Uige1 — 2Ug5 + Ui

Sx2 h2 512 h2

e Our finite difference formula is thus,

1

e (Uiv1j + wi-15 — 4wy + w1 +uij-1) = fij.

e Rearranging, we can solve for u;;:

4
sl = Jig g (Wi Uiong o Uigen + i)

h? 1
U5 = Zfij =+ +Z (Wig1j + Wim1j + Ui 1 + Uij—1)

e Jacobi iteration uses the preceding expression as a fixed-point iteration:

1
ij

h2
k+1 N ki k k k
U = me + 7 (i Fuig i +ugy)

h2
= 7 Ji; + average of current neighbor values

e Note that this is analogous to

h? 1
k+1 k k k k k k
wi = U T fij + e (wipyy +uigj — 4w+ +ugy)
h2
Ur+1 — Ug -+ At (f — Auk), At = Z,
which is Euler forward applied to Stability Region for Euler’s Method

du Im(A\h)
E = —Au + f. Unstable

e We note that we have stability if [AAt| < 2

Re(\h)

}

e Recall that the eigenvalues for the 1D diffusion operator are

2 4

A = e (1 — cos jmAx) < =

e In 2D, we pick up contributions from both 522 and gzz :

8
max || 3
and we have stability since
8 h?
max | AAt] < e =2

e So, Jacobi iteration is equivalent to solving Au = f by time marching
du

o+ = —Au + f using EF with maximum allowable timestep size,

h2

At = —.
4

Jacobi Iteration in Matrix Form

e Our unsteady heat equation has the matrix form

Uip+1 = Up + At (f — Auk)

e For variable diagonal entries, Richardson iteration is
Upr1 = U + oM™ (f — Auk)
e lfo=1and M = D_l :dlag(A) [dm = 1/&2'2', dij — 0,) #]],
we have standard Jacobi iteration.

e If 0 < 1 we have damped Jacob:.

e)M is generally known as a smoother or a preconditioner,
depending on context.

Rate of Convergence for Jacobi Iteration

e Let e, := u — u;.
e Since Au = f, we have

Uy, = ug + At (Au— Auy)

—ua = —u
—€ryr1 = —€p — aAtAek
—ep1 = — ([—0AtA)e;

er = (I —oAtA) e
= (I —oAtA) u if ug = 0.

e If ¢ < 1, then the high wavenumber error components will decay because
AAt will be well within the stability region for EF.

e The low-wavenumber components of the solution (and error) evolve like
e A% hecause these will be well-resolved in time by Euler forward.

e Thus, we can anticipate

lexl| =~ |luf[e”tmmra

with Ay, = 272 (for 2D).
o If o = 1, we have

lexll & [[ufle™™ "% < tol

e Example, find the number of iterations when tol=10"12.

6—(7T2h2/4)k ~ 10—12

—(m*h?/4)k ~ In107'? ~ 24 (27.6...)

28 -2

- 9
m2h2 6N

k

Q

Here, N=number of points in each direction.

Recap

e Low-wavenumber components decay at a fixed rate: e AminAF,

e Stability mandates At < h?/4 = 1/4(N +1)2.
e Number of steps scales like N2.

e Note, if 0 = 1, then highest and lowest wavenumber components
decay at same rate.

o If % < o < 1, high wavenumber components of error decay very fast.
We say that damped Jacobi iteration is a smoother.

Solution after
1 iteration

Solution after
5 itierations

Example:

1D Jacobi lteration

Solut
A A
.r"“u NP A A U AL A
k¥ T =T ¥
v Y !
0.2 0.4 0.6 0.8
%
Solution
n
A / PN IR
LATE AN i E AN B WA
l,lllll.' 7 — ﬁlvl,r V% 7
0.z 04 0.6 0.8

45}

35

& 25}

Em
k!
\
\
\
'|“
0.2 04 0.6 0.3 1
b3
Error
\
|
!
\
i1
4
V4
\
\I‘
0.2 0.4 0.6 0.8

Error after 1
iteration

Error after 5
itierations

Observations:

e Error, e; is smooth after just a few iterations:

N 27722
— Error components are ~ u;e™’ khZm=/4

for 5 > 1 rapidly go to zero.

sin kmx;, and components

e Exact solution is u = uy + e, (er unknown, but smooth).

e Error satisfies, and can be computed from,
Ae, = 1y (:=f — Aup = Au — Au; = Aey).
e These observations suggest that the error can be well approximated

on a coarser grid and added back to u; to improve the current guess

e The two steps, smooth and coarse-grid correction are at the heart of
one of the fastest iteration strategies, known as multigrid.

Multigrid:

e Solve Ae, = rj approximately on a coarse grid and set u, = u; + ey.

e Approximation strategy is similar to least squares. Let
e, = Ve, and
AVe. = r,
where V' is an n x n. matrix with n, ~ n/2.

e Typically, columns of V' interpolate coarse point values to their mid-
points.

e Most common approach (for A SPD) is to require e. to solve
VI[AVe, — r] = 0
— & = V (VTAV) VT = V (VTAV) VT Ae,.

e For A SPD, ¢ is the A-orthogonal projection of e; onto R(V).

An example of V' for n = 5 and n.=2 is

N = DN

DO = DO

- 1=20 1 2 3 4
Coarse-to-fine interpolation
$ Multigrid stuff % n must be odd!
nc = (n-1)/2; V=spalloc(n,nc,n*nc); i=1;
for j=1l:nc;
V(i,j)=1/2; V(i+l,]j)=1; V(i+2,])=1/2; i=i+2;
end;
Ac = V'*A*V;

$ A Simple Two-Level MG iteration:

for k=1:5000

r = f-A*u; % Smoothing step

u = u + d*r;

r = f-A*u; % Coarse-grid correction

rc = V'*r;

ec = V*¥(Ac \ rc);

u = utec; poisson_mg.m demo

end;

5

nml+ 1

Example: Damped Jacobi (Richardson) lteration

Solution after
1 iteration

Solution after
5 itierations

04 0.6

Error

04 0.6

Error after 1
iteration

Error after 5
itierations

Multigrid Summary — Main Ideas

Solution Error
4.5

4

o5] Error after 5
3] iterations

Solution after
5 iterations

o 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
x X

e Take a few damped-Jacobi steps (smoothing the error), to get uy.
e Approximate this smooth error, e, := u — uy, on a coarser grid.
e Exact error satisfies

Ae, = Au — Au, = f — Au =: r.

Let ey := Ve, be the interpolant of e., the coarse-grid approximation to e.

ey is closest element in R(V') to e (in the A-norm), given by the projection:

e; = V(VTAV) 'VTAe, = V (A)7) VT,

Update u; with the coarse-grid correction:

Smooth again and repeat.

Solution

Solution after 3
1 iteration - *

A
A7 / ,

\j -:

Solution after
5 itierations

L
0.2

L L L
04 0.6 0.3
x

Solution

L L L
04 0.6 0.8

Example: Two-Level Multigrid

ag Emror
|
015} ||| ”
| i
o1l | I 1
oL i I ‘\ ||'
I f f i
aost || I oA II'| ‘ ﬂ
Al AUNENAY i |
/ \1,‘ | || I||n" “". || ‘\ IIl 1 Il ‘
Py A I S A WY | | |
\‘ T .'F III III 1 \“‘]
\‘ || L "u Ill‘ "'-.-"ll
005} \‘ I||| 'll‘ “\‘ Illllll
| |
01t “.'I
-0.15
0 0.2 04 0.6 0.8 1
X
5 X 107 Error “‘
|
4t f|| | ‘\ \I-
|f - ||
(]! |
ol |I ‘\ i i [
| || I| f II.' ‘\“ I,l' ‘\“ |
oot : AN I!l
| | VAR |
| | “ f I|I ‘\‘ Yoo “‘ I||
2 |I “ ‘\ || |I|“ ‘\'I b
Vo | \
IJ| “ || !
sl |
|
" . . . ,
0 0.2 0.4 0.6 0.8 1

Error after 1
iteration

Error after 5
itierations

Solution after
1 iteration

Iteration
History

)

IIu-ukII

Example: Two-Level Multigrid

Solution

-

¢
!

J

T

L
0.2

L L L
04 0.6 0.3 1
x

Convergence for 1D Multigrid vs. Jacobi

s L L
100 200 300

L L L L L
400 500 600 700 800 900 1000

Iteration Number, k

2 |
015} |||\ /\
| I
01 “ | | “
AR
0.05 \ ‘\ \ III I| II| “‘ I}, ““ I| '|‘ “
n“i \"i‘ || .'I l'-f \ .'II I"a'll | | 1‘
RN RV Wi
|| | WA
005} \‘ || III ‘\' '|"|'
\|| 'u‘
o
L \M_
H| ||H‘\ \‘)I
i I) \ ||| “| . i f || »
AN A S
co L VAL
I| l\‘ l\ [\'.‘ “"’ v ‘\‘ f
-2 -||||| ||| “‘ }f III|I||| ! ‘IIU(i
"'} “u‘

Error after 1
iteration

Error after 5
itierations

Multigrid Comments

Smoothing can be improved using under-relaxation (o = 2/3 is optimal for 1D case).
4 Basically — want more of the high-end error spectrum to be damped.

System in A, is less expensive to solve, but is typically best solved by repeating the smooth/
coarse-grid correct pair on yet another level down.

Can recur until n_ ~ 1, at which point system is easy to solve.

Typical MG complexity is O(n) or O(n log n), with very good constants in higher space
dimensions (N, = N/2 - n,=n/8 in 3D).

For high aspect-ratio cells, variable coefficients, etc., smoothing and coarsening strategies
require more care, so this continues to be an active research area.

Stability Region for Euler's Method

Im(A\h)

Unstable

Stable

Re(\h)

Region where

11 4+ A\h| < 1.

05k

05

Growth Factor: Euler Forward

Growth Factors for Real)\

Growth Factor: Euler Backward Growth Factor: Trapezoidal Rule
T T T T T T T 1.5 T T T T T T T

0S5

71 I —

-1 -1 <
2 A 0 1.3 K . K - . 5 5 X . -

a4t At aAt
J Each growth factor approximates e*4t for A\At > 0
d For EF, |G| is not bounded by 1

J For Trapezoidal Rule, local (small\ At) approximation is O(AAt?), but
|G| 2 -1as AAt 2 -co. [Trapezoid method is not L-stable.]

J BDF2 will give 2"d-order accuracy, stability, and |G|2>0 as AAt > - .

More on 2D Systems Matrices for Poisson Equation

—Vu = f(z,y), plus BCs (10)

_ _(Pu Ou
N or? = Oy?
u 6%u

= (5) roun

where we have substituted the finite difference approximations, assumed to be about the point x;; := (x;,y;),

Ou w1 = Ui Uiy (11)
dx? Ag?

5*u L Wigh1 — 2Uig Ui

oy? Ay? ’

with the further assumption of uniform grid spacing, Az = Ay = h. We’ll also consider homogeneous
Dirichlet boundary conditions, that is, u(x,y)|5 = 0. The respective unknowns and data in this case are
u;; and f;;, governed by the following system of equations

Wip1,j —2Ui 5 +Uim1,j | Uig1 — 2U5 U1\
- (s =P + — = fu, (12

for i,5 € [1,..., N]?.

Assuming a lexicographical ordering in which the i- (z-) index advances fastest, the system takes on the
following matrix structure for Ax = Ay = h.

4 -1 -1
-1 4 -1 -1
-1
-1
1 4 -1
-1 4 -1
-1 -1 4 -1
-1
-1
-1 -1 4
-1
—1
-1
-1 4 -1
-1 -1 4

AQD

Upq J11
Ugy Jo1
Upri Far
Uyo Ji2
Ug2 fa2
Upnra Farz
Uy N fin
UsN fan
Unr N fun
U

I~

Note that Asp can be expressed as the sum of two systems, one associated with A, coming
2 2 .
from 2712‘, and one associated with one associated with A, coming from ‘27"2‘. Specifically, we can

write
Ap = (I, ®A) + (44 © L), (13)

where we have introduced the Kronecker (or tensor) product, ®. For two matrices A and B, their
Kronecker product C' = A ® B is defined as the block matrix

a1B apsB -+ -+ a1,B
a0 B ayxB -+ -+ a9,B

C = . " (14)
a1 B amaB -+ -+ Ay B

We will soon explore a few properties of this form, but for now simply note that it allows a clean
expression of the discretized Poisson operator in 2D. Consider the following splitting of Asp.

A, (2 —L \
Ay 1| -1,

T SR

(Am) \ ~I, 2196)

close all; format compact;
% Kronecker Product Demo

% NOTE: It is important to use SPARSE matrices throughout.

% Otherwise, your run times will be very long and
pA you will likely run out of memory!
Lx=2; Ly=1;

nx=15; ny=3; 7 Number of _interior_ points
dx=Lx/(nx+1); dy=Ly/(ny+1);

% USE help spdiags

ones(nx,1); Ax = spdiags([-e 2*e -e], -1:1, nx, nx)/(dx*dx);
ones(ny,1); Ay = spdiags([-e 2xe -e]l, -1:1, ny, ny)/(dy*dy);

e
e

Ix=speye(nx); Iy=speye(ny);
A = kron(Iy,Ax) + kron(Ay,Ix); %%% FINITE DIFFERENCE STIFFNESS MATRIX
% A couple of demo cases without the 1/(dx*dx) scaling.

nd= 5;
e = ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd);
T = kron(Iy,Ad); full(T)

nd= 15;

e = ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd);

T = kron(Iy,Ad); spy(T)

title(’I_y \otimes A_x’,’fontsize’,16)

set (gcf, ’PaperUnits’, ’normalized’) ;set(gcf,’PaperPosition’,[0 0 1 1])
print -dpdf iyax.pdf

pause; figure

nd= 5;

e = ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd);
T = kron(Ad,Ix); full(T)

nd= 15;

e ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd);

T = kron(Ad,Ix); spy(T)

title(’A_y \otimes I_x’,’fontsize’,16)

set (gcf, ’PaperUnits’, ’normalized’) ;set(gcf, ’PaperPosition’, [0 0 1 1])
print -dpdf ayix.pdf

00
nz =645

Note that our finite-difference stiffness matrix in matlab would be written as

A = kron(Iy,Ax) + kron(Ay,Ix)

where Ax and Ay are formed using the matlab spdiags command (help spdiags), and Iy and Ix
are formed using speye.

It is important to use sparse matrices in matlab for these higher-dimensional (2D and 3D)
problems or you will run out of memory and it will take very long to solve these problems.

This problem is known in scientific computing and the curse of dimensionality.

1.4 Poisson Equation in R®

We now extend the 1D and 2D concepts to the most important 3D case. The short story is that
the 3D stiffness matrix takes the wonderfully symmetric form

Asp = (I, ® Asp) + (A, ® Iap) (15)
= (LRLRA)+(LoA,RL)+ (A, 01,®1,).

and the discrete system is as before Aspu = S This of course is the form that arises for a finite
difference discretization of —V?u = f in Q = [0,1]3, u = 0 on 91, or, more explicitly,

52 52 52
— (5:1;2 + 5572 + 5Z2) = f(4, 95, 21), (16)
with
52_“ o Wikt — 2Ujk + Uij k-1 (17)
522 ik Az2 ’

. . 2 2
and equivalent expressions for 27"2‘ and ‘2775

