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The Geometry of Linear Equations

1

• Example, 2⇥ 2 system:

2x � y = 1

x + y = 5

• Can look at this system by rows or columns.

• We will do both.

1Gilbert Strang: Linear Algebra and Its Applications

The Geometry of Linear Equations

1

• Example, 2⇥ 2 system:

2x � y = 1

x + y = 5

• Can look at this system by rows or columns.

• We will do both.

1Gilbert Strang: Linear Algebra and Its Applications



Row Form

• In the 2⇥ 2 system, each equation represents a line:

2x � y = 1 line 1

x + y = 5 line 2

• The intersection of the two lines gives the unique point
(x, y) = (2, 3), which is the solution.

2x� y = 1

(0,�1)
x + y = 5

(0, 5)

(5, 0)

(x, y) = (2,3)



Column Form

• The second (and more important) geometry is column based.

• Here, we view the system of equations as one vector equation:

Column form x


2
1

�
+ y


�1
1

�
=


1
5

�
.

• The problem is to find coe�cients, x and y, such that the com-
bination of vectors on the left equals the vector on the right.

(2,1) = column 1

(4,2)

(�1, 1)

(�3, 3)

(1, 5) =
2 ⇥ (column 1)

+3 ⇥ (column 2)



Row Form: A Case with n=3.

2u + v + w = 5

Three planes 4u � 6v = �2

�2u + 7v + 2w = 9

• Each equation (row) defines a plane in lR3.

• The first plane is 2u + v + w = 5 and it contains points (52,0,0)
and (0,5,0) and (0,0,5).

• It is determined by three points, provided they do not lie on a
line.

• Changing 5 to 10 would shift the plane to be parallel this one,
with points (5,0,0) and (0,10,0) and (0,0,10).



Row Form: A Case with n=3, cont’d.

• The second plane is 4u� 6v = �2.

• It is vertical because it can take on any w value.

• The intersection of this plane with the first is a line.

• The third plane, �2u + 7v + 2w = 9 intersects this line
at a point, (u, v, w) = (1, 1, 2), which is the solution.

• In n dimensions, the solution is the intersection point of n hy-
perplanes, each of dimension n� 1. A bit confusing.

Note that u=5 is also a plane…. 



Row Form 

The green & blue planes (rows 2 and 3) intersect in a line. 
Equation 1 (red) intersects this line. 

Row Form: A Case with n=3.

2u + v + w = 5

Three planes 4u � 6v = �2

�2u + 7v + 2w = 9

• Each equation (row) defines a plane in lR3.

• The first plane is 2u + v + w = 5 and it contains points (52,0,0)
and (0,5,0) and (0,0,5).

• It is determined by three points, provided the do not lie on a line.

• Changing 5 to 10 would shift the plane to be parallel this one,
with points (5,0,0) and (0,10,0) and (0,0,10).



Column Vectors and Linear Combinations

• The preceding system is viewed as the vector equation

u

2

4
2
4

�2

3

5 + v

2

4
1

�6
7

3

5 + w

2

4
1
0
2

3

5 =

2

4
5

�2
9

3

5 = b.

• Our task is to find the multipliers, u, v, and w.

• The vector b is identified with the point (5,-2,9).

• We can view b as a list of numbers, a point, or an arrow.

• For n > 3, it’s probably best to view it as a list of numbers.



Vector Addition Example
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.



Linear Combination
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The Singular Case: Row Picture

2x� y = 1

(0,�1)

4x� 2y = �2

2x � y = 1

4x � 2y = �2

• No solution.



The Singular Case: Row Picture

2x� y = 14x� 2y = 2

(0,�1)

2x � y = 1

4x � 2y = 2

• Infinite number of solutions.
Coincident lines intersect at an 
infinite number of points! 



The Singular Case: Column Picture

b =


1

�2

�

x


2
4

�
+ y


�1
�2

�
=


1

�2

�

• No solution.
b does not lie on the line 
spanned by a1 = c a2 



The Singular Case: Column Picture

b =


1
2

� x


2
4

�
+ y


�1
�2

�
=


1

�2

�

• Infinite number of solutions. An infinite number of combinations 
of a1 and a2 will equal b. 



Singular Case: Row Picture with n=3

(a) two parallel planes (b) no intersection

(c) line of intersection (d) all planes parallel

End-on view of 3 planes.



Singular Case: Column Picture with n=3

O

b not in plane

O

b in plane

• In this case, the three columns of the
system matrix lie in the same plane.

Example: u

2

4
1
2
3

3

5 + v

2

4
4
5
6

3

5 + w

2

4
7
8
9

3

5 = b.



Matrix Form and Matrix-Vector Products.

• We start with the familiar (row) form

2u + v + w = 5

4u � 6v = �2

�2u + 7v + 2w = 9

• In matrix form, this is
2

4
2 1 1
4 �6 0

�2 7 2

3

5

2

4
u

v

w

3

5 =

2

4
5

�2
9

3

5
, or Au = b.

• Of course, this must equal our column form,

u
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Matrix Form and Matrix-Vector Products, 2.

• So, if A is the matrix with columns a1, a2, and a3,

A :=

2

4
2 1 1
4 �6 0

�2 7 2

3

5 =:

2

4 a1 a2 a3

3

5
, and u :=

2

4
u

v

w

3

5

• Then

Au = u a1 + v a2 + w a3



Matrix Form and Matrix-Vector Products, 3.

• In general, if x is the n-vector

x :=

2

6664

x1

x2
...

x

n

3

7775
,

and A is an m ⇥ n matrix, then

Ax = x1 a1 + x2 a2 + · · · + x

n

a
n

= linear combination of the columns of A.

• Always.



Matrix-Vector Products, Example.

If x̂ := V

�
V

T

AV

��1
V

T b

= V y.

Then x̂ = linear combination of the columns of V .

• x̂ lies in the column space of V .

• x̂ lies in the range of V .

• x̂ 2 span(V )



Sigma Notation

• Let A be an m ⇥ n matrix,

A =

2

4 a1 · · · a
j

· · · a
n

3

5

=

2

666664

a11 · · · a1j · · · a1n
... ... ...
a

i1 · · · a

ij

· · · a

in

... ... ...
a

m1 · · · a

mj

· · · a

mn

3

777775
.

• Then

w = Ax =
nX

j=1

x

j

a
j

=
nX

j=1

a
j

x

j

w

i

= (Ax)
i

=
nX

j=1

a

ij

x

j



Matrix Multiplication

If B =

2

4 b1 b2

3

5
,

Then C = AB =

2

4
Ab1 Ab2

3

5
.

c

ij

=
nX

k=1

a

ik

b

kj

Q: (Important.) Suppose A and B are n ⇥ n matrices.

• How many floating point operations (flops) are required to
compute C = AB?

• What is the number of memory accesses? Let’s work it out… 



Gaussian Elimination: Ax = b.

What you should know:

• The method..., including with pivoting.

• The equivalence between Gaussian elimination and LU factorization.

• Understand Gaussian elimination well enough to apply it in frequently encountered
special cases, e.g., when

– A is full.

– A is tridiagonal.

– A is banded.

– A is sparse.

• Understand the cost (memory and operation count) for the preceding cases.

• Understand the influence of the condition number of the original system, Ax = b, which
may be highly ill-conditioned.



Some preliminaries:

• Obviously, the solution of

�u + v + w = 1
3u � v + w = 2
2u + w = 3

is unchanged if we re-order the equations,

3u � v + w = 2
�u + v + w = 1
2u + w = 3

• In matrix form:
2

4
�1 1 1
3 �1 1
2 0 1

3

5

0

@
u
v
w

1

A =

0

@
1
2
3

1

A ,

is equivalent to
2

4
3 �1 1

�1 1 1
2 0 1

3

5

0

@
u
v
w

1

A =

0

@
2
1
3

1

A .

• We have exchanged rows 1 and 2 in the matrix and in the right-hand side, but not in
the unknowns (the column multipliers of A), [u v w]T .



• Recall, if 1

P =

2

66664

p̃T
1

p̃T
2

...

p̃T
n

3

77775
,

then

Pb =

0

BBBB@

p̃T
1 b

p̃T
2 b

...

p̃T
nb

1

CCCCA
.

• Consider

Pb =

2

64
0 1 0

1 0 0

0 0 1

3

75

0

B@
b1

b2

b3

1

CA =

0

B@
b2

b1

b3

1

CA

• Here, P is a permutation matrix that permutes rows 1 and 2 of b.

• Similarly, P ⇥ A results in an interchange of the rows of A: is applied to each column

PA = P

2

6664
a1 a2 a3

3

7775
=

2

6664

a21 a22 a23

a11 a12 a13

a31 a32 a33

3

7775
=

2

6664

ãT
2

ãT
1

ãT
3

3

7775
.

1
We will generally use

˜aT
i to denote the ith row of a matrix A and aj to denote the jth column.
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• Can also formally swap multiple rows, e.g.,

Pb =

2

64
0 1 0

0 0 1

1 0 0

3

75

0

B@
b1

b2

b3

1

CA =

0

B@
b2

b3

b1

1

CA

• Note that the columns of P are orthonormal, meaning, pT
i pj = �ij.

Here, we introduce the Kronecker delta notation, which we will use often:

�ij =

(
1 if i = j,

0 if i 6= j.

• Since
�
P TP

�
ij

= pT
i pj = �ij, we have

P TP = I,

which is the n⇥ n identity matrix.

• Thus, the inverse of P is P T .

• Application of P T reverses the permutation of P .

• Note – If P results in only a pairwise row swap then P is symmetric, P = P T , and
thus its own inverse. But this condition does not apply in the more general case.



• Note that if post-multiply A by P , we swap columns of A.

• Example:

AP =

2

6664
a1 a2 a3

3

7775

2

6664

0 1 0

0 0 1

1 0 0

3

7775
=

2

6664
a3 a1 a2

3

7775



• Coming back to our original 3⇥ 3 system,
2

4
�1 1 1
3 �1 1
2 0 1

3

5

0

@
u
v
w

1

A =

0

@
1
2
3

1

A ,

which is equivalent to
2

4
3 �1 1

�1 1 1
2 0 1

3

5

0

@
u
v
w

1

A =

0

@
2
1
3

1

A ,

we see that the second form is equivalent to multiplying the first by a permutation
matrix P .

• That is, if we were originally solving Ax = b, then the new, equivalent, system is

PAx = Pb.

• We have multiplied both sides of the equation by the matrix P .

• As long as P is invertible, we can always multiply both sides of a system by P and
expect the same result (modulo round-o↵ errors).

• We will (formally) use P when we implement pivoting, which in many cases is essential
for numerical stability.

• Note that the positions of the unknown variables, x = [u v w]T are not
swapped when the system is multiplied by P .



Other Useful Operations:

• Diagonal Scaling: If D is a square diagonal matrix with entries

D =

2

66664

d1

d2
. . .

dn

3

77775
,

then DA results in a row scaling of A,

DA =

2

66664

d1

d2
. . .

dn

3

77775

2

666664

ãT
1

ãT
2

...

ãT
n

3

777775
=

2

666664

d1 ãT
1

d2 ãT
2

...

dn ãT
n

3

777775
.

• Similarly, multiplying from the right yields a column scaling,

AD =

2

66664
a1 a2 · · · an

3

77775

2

66664

d1

d2
. . .

dn

3

77775
=

2

66664
a1d1 a2d2 · · · andn

3

77775
.



Other Useful Definitions:

• Matrix Transpose: If A is a m ⇥ n matrix with entries (A)ij = aij, then the matrix
transpose is denoted as AT , which is the n⇥m matrix having entries (AT )ij = aji.

• Symmetric Matrix: If A is a square n ⇥ n matrix and A = AT (i.e., aij = aji,
i, j 2 {1, . . . , n}2), then A is said to be symmetric.

• Skew-Symmetric Matrix: If A is a square n⇥n matrix and A = �AT (i.e., aij = �aji,
i, j 2 {1, . . . , n}2), then A is said to be skew symmetric.

• Symmetric Positive Definite Matrix: A is symmetric positive definite (SPD) if

� A is symmetric

� xTAx > 0 for all x 6= 0.

• Diagonally Dominant:

• A is said to be weakly diagonally dominant if

|aii| �
X

j 6=i

|aij|, i = 1, . . . , n.

• A is said to be strictly diagonally dominant if

|aii| >
X

j 6=i

|aij|, i = 1, . . . , n.

• SPD and diagonally dominant matrices have many nice properties related to solvability,
no need for pivoting, etc., and are hence often used for examples.
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Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Systems of Linear Equations

Given m⇥ n matrix A and m-vector b, find unknown
n-vector x satisfying Ax = b

System of equations asks “Can b be expressed as linear
combination of columns of A?”

If so, coefficients of linear combination are given by
components of solution vector x

Solution may or may not exist, and may or may not be
unique

For now, we consider only square case, m = n
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Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Singularity and Nonsingularity

n⇥ n matrix A is nonsingular if it has any of following
equivalent properties

1 Inverse of A, denoted by A

�1, exists

2
det(A) 6= 0

3
rank(A) = n

4 For any vector z 6= 0, Az 6= 0
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Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Existence and Uniqueness

Existence and uniqueness of solution to Ax = b depend
on whether A is singular or nonsingular

Can also depend on b, but only in singular case

If b 2 span(A), system is consistent

A b # solutions
nonsingular arbitrary one (unique)

singular b 2 span(A) infinitely many
singular b /2 span(A) none
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Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Geometric Interpretation

In two dimensions, each equation determines straight line
in plane

Solution is intersection point of two lines

If two straight lines are not parallel (nonsingular), then
intersection point is unique

If two straight lines are parallel (singular), then lines either
do not intersect (no solution) or else coincide (any point
along line is solution)

In higher dimensions, each equation determines
hyperplane; if matrix is nonsingular, intersection of
hyperplanes is unique solution
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Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Example: Nonsingularity

2⇥ 2 system

2x1 + 3x2 = b1

5x1 + 4x2 = b2

or in matrix-vector notation

Ax =


2 3

5 4

� 
x1

x2

�
=


b1

b2

�
= b

is nonsingular regardless of value of b

For example, if b =

⇥
8 13

⇤T , then x =

⇥
1 2

⇤T is unique
solution
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Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Example: Singularity

2⇥ 2 system

Ax =


2 3

4 6

� 
x1

x2

�
=


b1

b2

�
= b

is singular regardless of value of b

With b =

⇥
4 7

⇤T , there is no solution

With b =

⇥
4 8

⇤T , x =

⇥
� (4� 2�)/3

⇤T is solution for any
real number �, so there are infinitely many solutions
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Nearly Singular Matrices 

Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Error Bounds – Illustration

In two dimensions, uncertainty in intersection point of two
lines depends on whether lines are nearly parallel

< interactive example >
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Well-Conditioned                                Ill-Conditioned  
                                                          (nearly singular) 
 
 
[ An interesting question:  For the 2x2 case, can you relate the angle 

                    to the condition number ?] 



Conditioning of Linear Systems:   Ax = b 
❑  As before, we ask the question,  

 “If we perturb b, how much change do we see in x?” 

 

❑  To pursue the answer to this question, we need a measure of the 
size of ¢ x. 

❑  We introduce vector norms,  ||x||, which measure the magnitude 
of a vector x. 

❑  Vector norms are also useful in measuring closeness of 
approximate solutions. 

❑  Their closely-associated matrix norms are valuable in    
predicting how easy it is to solve a system, either directly           
(via LU factorization) or iteratively. 



Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Solving Linear Systems

To solve linear system, transform it into one whose solution
is same but easier to compute

What type of transformation of linear system leaves
solution unchanged?

We can premultiply (from left) both sides of linear system
Ax = b by any nonsingular matrix M without affecting
solution

Solution to MAx = Mb is given by

x = (MA)

�1
Mb = A

�1
M

�1
Mb = A

�1
b
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Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example: Permutations

Permutation matrix P has one 1 in each row and column
and zeros elsewhere, i.e., identity matrix with rows or
columns permuted

Note that P�1
= P

T

Premultiplying both sides of system by permutation matrix,
PAx = Pb, reorders rows, but solution x is unchanged

Postmultiplying A by permutation matrix, APx = b,
reorders columns, which permutes components of original
solution

x = (AP )

�1
b = P

�1
A

�1
b = P

T
(A

�1
b)
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b = P
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A

�1
b = P

T
(A
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Matlab Demo:  perm.m 



Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Example: Diagonal Scaling

Row scaling: premultiplying both sides of system by
nonsingular diagonal matrix D, DAx = Db, multiplies
each row of matrix and right-hand side by corresponding
diagonal entry of D, but solution x is unchanged

Column scaling: postmultiplying A by D, ADx = b,
multiplies each column of matrix by corresponding
diagonal entry of D, which rescales original solution

x = (AD)

�1
b = D

�1
A

�1
b
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Triangular Linear Systems

What type of linear system is easy to solve?

If one equation in system involves only one component of
solution (i.e., only one entry in that row of matrix is
nonzero), then that component can be computed by
division

If another equation in system involves only one additional
solution component, then by substituting one known
component into it, we can solve for other component

If this pattern continues, with only one new solution
component per equation, then all components of solution
can be computed in succession.

System with this property is called triangular
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Triangular Matrices

Two specific triangular forms are of particular interest

lower triangular : all entries above main diagonal are zero,
aij = 0 for i < j

upper triangular : all entries below main diagonal are zero,
aij = 0 for i > j

Successive substitution process described earlier is
especially easy to formulate for lower or upper triangular
systems

Any triangular matrix can be permuted into upper or lower
triangular form by suitable row permutation
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Forward-Substitution

Forward-substitution for lower triangular system Lx = b

x1 = b1/`11, xi =

0

@
bi �

i�1X

j=1

`ijxj

1

A
/ `ii, i = 2, . . . , n

for j = 1 to n

if `jj = 0 then stop
xj = bj/`jj

for i = j + 1 to n

bi = bi � `ijxj

end

end

{ loop over columns }
{ stop if matrix is singular }
{ compute solution component }

{ update right-hand side }
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Back-Substitution

Back-substitution for upper triangular system Ux = b

xn = bn/unn, xi =

0

@
bi �

nX

j=i+1

uijxj

1

A
/ uii, i = n� 1, . . . , 1

for j = n to 1

if ujj = 0 then stop
xj = bj/ujj

for i = 1 to j � 1

bi = bi � uijxj

end

end

{ loop backwards over columns }
{ stop if matrix is singular }
{ compute solution component }

{ update right-hand side }
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Solution of Lower Triangular Systems

2

666666666664
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l
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l
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... .

.

... .

.

ln1 ln2 ln3 · · · · · · lnn

3

777777777775

2

666666666664

x

1

x

2

x

3

...

...

xn

3

777777777775

=

2

666666666664

b

1

b

2

b

3

...

...

bn

3

777777777775

for i = 1, 2, . . . , n : xi =
1

lii

 
bi �

i�1X

j=1

lij xj

!
.

As written:

for i = 1 : n

xi = bi

for j = 1 : i� 1

xi = xi � lij xj

end

xi = xi/lii

end

Better memory access (faster):

for j = 1 : n

if ljj = 0, stop - matrix is singular.

xj = bj/ljj

for i = j + 1 : n

bi = bi � lij xj

end

end



Solution of Upper Triangular Systems

2

666666666664

u
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u
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u
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· · · · · · u

1n

u

22

u
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· · · · · · u

2n

u

33

u

33

.

. ...

.

. ...

unn

3

777777777775
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x

3

...

...
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=
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b

1

b

2

b

3

...

...

bn

3

777777777775

for i = n, n� 1, . . . , 1 : xi =
1

uii

 
bi �

nX

j=i+1

uij xj

!
.

As written:

for i = n : 1

xi = bi

for j = i+ 1 : n

xi = xi � uij xj

end

xi = xi/uii

end

Better memory access (faster):

for j = n : 1

if ujj = 0, stop - matrix is singular.

xj = bj/ujj

for i = 1 : j � 1

bi = bi � uij xj

end

end What is the cost ?? 



Solution of Upper Banded Systems

Suppose U is a banded matrix: uij = 0, j > i+ �.

For example, � = 2:
2

666666666664

u
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u

12

u

13

u

22

u

23

u

14

u

33

.

.
.

.

.

.
.

.
un�2,n

.

.
un�1,n

unn

3

777777777775

2

666666666664

x

1

x

2

x

3

...
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xn

3

777777777775

=
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666666666664

b

1

b

2

b

3

...

...

bn

3

777777777775

for i = n, n� 1, . . . , 1 : xi =
1

uii

0

@
bi �

min(i+�,n)X

j=i+1

uij xj

1

A
.

What is the cost ?? 



Solution of Upper Banded Systems

for i = n, n� 1, . . . , 1 : xi =
1

uii

0

@
bi �

min(i+�,n)X

j=i+1

uij xj

1

A
.

As written:

for i = n : 1

xi = bi, j

max

:= min(j + �, n)

for j = i+ 1 : j
max

xi = xi � uij xj

end

xi = xi/uii

end

Better memory access (faster):

for j = n : 1

if ujj = 0, stop - matrix is singular.

xj = bj/ujj, i

min

:= max(1, j � �)

for i = i

min

: j � 1

bi = bi � uij xj

end

end

• In this case, there are ⇠ 2�n operations and ⇠ �n memory refer-
ences (one for each uij).

• Often � ⌧ n, which means that the upper-banded system is much

faster to solve than the full upper triangular system.

• The same savings applies to the lower-banded case.



Generating Triangular Systems:  LU Factorization 
 
 

A = LU 



Generating Upper Triangular Systems: LU Factorization

• Example:

2

6666664

1 2 3

4 4 6 1

8 8 9 2

6 1 3 3

4 2 8 4

3

7777775

2

6666664

x1

x2

x3

x4

x5

3

7777775
=

2

6666664

0

4

4

4

4

3

7777775

• First column is already in upper triangular form.

• Eliminate second column:

row3  � row3 �
8

4
⇥ row2

row4  � row4 �
6

4
⇥ row2

row5  � row5 �
4

4
⇥ row2

2

6666664

1 2 3

4 4 6 1

0 �3 0

�5 �6 3
2

�2 2 3

3

7777775

2

6666664

x1

x2

x3

x4

x5

3

7777775
=

2

6666664

0

4

�4
�2
0

3

7777775

• a22 = 4 is the pivot

• row2 is the pivot row

• l32 =
8
4 , l42 =

6
4 , l52 =

4
4 , is the multiplier column.



Generating Upper Triangular Systems: LU Factorization

• Augmented form. Store b in A(:, n+ 1):

2

6666664

1 2 3 0

4 4 6 1 4

8 8 9 2 4

6 1 3 3 4

4 2 8 4 4

3

7777775
�!

2

6666664

1 2 3 0

4 4 6 1 4

0 �3 0 �4

�5 �6 3
2 �2

�2 2 3 0

3

7777775

This Case. General Case.

pivot = 4 = akk when zeroing the kth column.

pivot row = [ 4 6 1 | 4 ] = r

T
k = akj, j = k + 1, . . . , n [ + bk ]

multiplier column =
1

4

2

64
8

6

4

3

75 = ck =
aik

akk
, i = k + 1, . . . , n

=

2

64
2
3
2

1

3

75
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Generating Upper Triangular Systems: LU Factorization

• Augmented form. Store b in A(:, n+ 1):
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This Case. General Case.

pivot = 4 = akk when zeroing the kth column.

pivot row = [ 4 6 1 | 4 ] = r

T
k = akj, j = k + 1, . . . , n [ + bk ]

multiplier column =
1

4

2

64
8

6

4

3

75 = ck =
aik

akk
, i = k + 1, . . . , n

=

2

64
2
3
2

1

3

75

Using LU Factorization in Practice

• Give LU = A, we can solve Ax = b as follows:

Given: Ax = LU x = b

L (U x) = Lb = b

Solve: Ly = b

Ux = y

• We have seen already that the total solve cost (for L and U solves) is 2⇥ n2
.

• What about the factor cost, A �! LU ?

ck �! lk, store as column k of L.



kth Update Step

• Look more closely at the kth update step for Gaussian elimination.

• Assume A is m ⇥ n, which covers the case where A is augmented with the
right-hand side vector.

• For each row i, with i > k, we want to generate a zero in place of aij.

• We do this by subtracting a multiple of row k from row i.

• This operation can be expressed in several equivalent ways:

rowi = rowi � aik
akk

⇥ rowk

aij = aij � aik a
�1
kk akj j = k + 1, . . . , n

= aij � (ck)i
�
rTk

�
j

j = k + 1, . . . , n

A(k+1) = A(k) � ck r
T
k ,

• Here, ck is the column vector with entries (ck)i = aik/akk, and rTk is the row
vector with entries

�
rTk

�
j
= akj.

• Formally, we think of (ck)i = 0, i  k and
�
rTk

�
j
= 0, j  k, though we would

implement as an update only to the active submatrix.

• The m ⇥ n matrix ck r
T
k is of rank 1. All columns are multiples of the only

linearly independent column, ck.

• We typically save the entries of the multiplier column as the kth column of a
lower triangular matrix: lik := (ck)i.

Matlab: lu_demo_1.m 



Multiplier Columns = lk: LU = A

• A(1)
:= A, A(k+1)

= A(k) � ckr
T
k .

LU =

2

664

1

a(1)21 /a
(1)
11 1

a(1)31 /a
(1)
11 a(2)31 /a

(2)
22 1

3

775

2

664

a(1)11 a(1)12 a(1)13

a(2)22 a(2)23

a(3)33

3

775

=

2

664

a(1)11 a(1)12 a(1)13

a(1)21 a(2)22 +

a
(1)
21 a

(1)
12

a
(1)
11

a(2)23 +

a
(1)
21 a

(1)
13

a
(1)
11

a(1)31 etc. etc.

3

775

• Recall, for example,

a(2)22 = a(1)22 � a(1)21 a
(1)
12

a(1)11

, or

a(k+1)
ij = a(k)ij �

a(k)ik a(k)kj

a(k)kk

, in general.

• Thus, we see that the 2-2 entry of LU is indeed a(1)22 = a22, etc.



LU Factorization as a Sequence of Matrix-Matrix Products

(Following notation in the text.)

• Consider solution of Ax = b via Gaussian elimination.

• Let A(1)
:= A and b

(1)
:= b.

• Take n = 4 for purposes of illustration.

• Apply one-step of Gaussian elimination to the augmented system

⇥
A(1) |b(1)

⇤
.

• After one round, we have:

⇥
A(2) |b(2)

⇤
= M1

⇥
A(1) |b(1)

⇤

= M1

2

66666664

a(1)11 a(1)12

.

.

. a(1)14 b(1)1

a(1)21 a(1)22

.

.

. a(1)24 b(1)2

a(1)31 a(1)32

.

.

. a(1)34 b(1)3

a(1)41 a(1)42

.

.

. a(1)44 b(1)4

3

77777775

=:

2

66666664

a(2)11 a(2)12

.

.

. a(2)14 b(2)1

0 a(2)22

.

.

. a(2)24 b(2)2

0 a(2)32

.

.

. a(2)34 b(2)3

0 a(2)42

.

.

. a(2)44 b(2)4

3

77777775

.

• That is, M1

⇥
A(1) |b(1)

⇤
=

⇥
A(2) |b(2)

⇤
, where A(2)

is zero in column 1 for i > 1.

• The matrix that zeros out these entries in column one is given by:

M1 = I � m1 e
T
1 , m1 =

1

a(1)11

h
0 a(1)21 a(1)31 a(1)41

iT
,

and e1 = the 1st column of the identity matrix.



LU Factorization as a Sequence of Matrix-Matrix Products

(Following notation in the text.)

• Consider solution of Ax = b via Gaussian elimination.

• Let A(1)
:= A and b

(1)
:= b.

• Take n = 4 for purposes of illustration.

• Apply one-step of Gaussian elimination to the augmented system
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⇤
.

• After one round, we have:
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• That is, M1

⇥
A(1) |b(1)

⇤
=

⇥
A(2) |b(2)

⇤
, where A(2)

is zero in column 1 for i > 1.

• The matrix that zeros out these entries in column one is given by:

M1 = I � m1 e
T
1 , m1 =

1

a(1)11

h
0 a(1)21 a(1)31 a(1)41

iT
,

and e1 = the 1st column of the identity matrix.

• Test: Apply M1 to each column of

⇥
A(1) |b(1)

⇤
:

M1 · a(1)
1 = a

(1)
1 � m1e

T
1 a

(1)
1

h
M1a

(1)
1

i

i
= a(1)i1 �

 
a(1)i1

a(1)11

!
a(1)11 = 0, i > 1.

For any z 2 lR

n
,

[M1z]i = zi �
 
a(1)i1

a(1)11

!
z1 i > 1.

For any matrix V 2 lR

n⇥n0
,

[M1V ]ij = Vij �
 
a(1)i1

a(1)11

!
V1j i > 1, j = 1, . . . , n0.

ith row �! ith row � 2

nd
row⇥

 
a(1)i1

a(1)11

!
.

Elimination Step!!



• Test: Apply M1 to each column of

⇥
A(1) |b(1)

⇤
:

M1 · a(1)
1 = a

(1)
1 � m1e

T
1 a

(1)
1

h
M1a

(1)
1

i

i
= a(1)i1 �

 
a(1)i1

a(1)11

!
a(1)11 = 0, i > 1.

For any z 2 lR

n
,

[M1z]i = zi �
 
a(1)i1

a(1)11

!
z1 i > 1.

For any matrix V 2 lR

n⇥n0
,

[M1V ]ij = Vij �
 
a(1)i1

a(1)11

!
V1j i > 1, j = 1, . . . , n0.

ith row �! ith row � 1

st
row⇥

 
a(1)i1

a(1)11

!
.

Elimination Step!!



• Now, we take next step,

⇥
A(3) |b(3)

⇤
= M2

⇥
A(2) |b(2)

⇤
:

⇥
A(3) |b(3)

⇤
= M2

2

66666664
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.

.
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.

.
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.

.
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0 a(2)42

.

.

. a(2)44 b(2)4

3
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. a(3)34 b(3)3

0 0
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.

. a(3)44 b(3)4

3

77777775

,

with

M2 = I � m2 e
T
2 , m2 =

1

a(2)11

h
0 0 a(2)31 a(2)41

iT
,

and e2 = the 2nd column of the identity matrix.



• After n� 1 rounds, we have

⇥
A(n�1) |b(n�1)

⇤
= Mn�1Mn�2 · · ·M2M1 [A |b] ,

with U = A(n�1)
being upper triangular, and

Mk = I � mk e
T
k ,

the kth elementary elimination matrix.

• It’s easy to show that M�1
k = I + mk e

T
k .



Gaussian Elimination and Elementary Elimination Matrices

U = Mn�1Mn�2 · · ·M2M1A

= L�1A �! LU = A.

L�1
= Mn�1Mn�2 · · ·M2M1

L = M�1
1 M�1

2 · · ·M�1
n�1

= L1 L2 · · · Ln�1,

with

Lk := M�1
k = I + mk e

T
k .

• With more work, can show

L =

2

666666666664

1

m21 1

m31 m32 1

.

.

. .
.

.

.

. .
.

mn1 mn2 mn3 · · · · · · 1

3

777777777775

.

That is, the entries of L are just the entries of the multiplier columns!



Update step viewed as matrix-matrix product. 
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Elementary Elimination Matrices

More generally, we can annihilate all entries below kth
position in n-vector a by transformation

Mka =

2

666666664

1 · · · 0 0 · · · 0

... . . . ...
... . . . ...

0 · · · 1 0 · · · 0

0 · · · �mk+1 1 · · · 0

... . . . ...
... . . . ...

0 · · · �mn 0 · · · 1

3

777777775

2

666666664

a1
...
ak

ak+1
...
an

3

777777775

=

2

666666664

a1
...
ak

0

...
0

3

777777775

where mi = ai/ak, i = k + 1, . . . , n

Divisor ak, called pivot, must be nonzero
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Using LU Factorization in Practice

• Give LU = A, we can solve Ax = b as follows:

Given: Ax = LU x = b

L (U x) = Ly = b

Solve: Ly = b

Ux = y

• We have seen already that the total solve cost (for L and U solves) is 2⇥ n2
.

• What about the factor cost, A �! LU ?

ck �! lk, store as column k of L.



LU Factorization Costs (Important)

• In general, the cost for A �! LU is O(n3).

• It is large (i.e., it is not optimal, which would be O(n)), and therefore important.

• The dominant cost comes from the essential update step:

A(k+1) = A(k) � ck r
T
k ,

which is e↵ected for k = 1, . . . , n� 1 steps.

• If A is square (n⇥ n), then ck r
T
k is a square matrix with (n� k)2 nonzeros.

• Each entry requires one “*” and its subtraction from A(k) requires one “-”.

• Total cost is 2⇥ [ (n� 1)2 + (n� 2)2 + . . . (1)2] ⇠ 2n3/3 operations.

• Example: n = 103 �! n3 = 109. Cost is about 0.6 billion operations.
With a 3 GHz clock and 2 floating point ops / clock, expect about 0.1 seconds (very
fast).

• Example: n = 104 �! n3 = 1012. Cost is about 600 billion operations.
With a 3 GHz clock and 2 floating point ops / clock, expect about 100. seconds.



First Step:  Define sub-block  



Single Gaussian Elimination Step 



Second Step: Annihilate ck 

❑  Update step is: 

     which is a rank one update to AK: 



Can also be Implemented in Block Form 

❑  Advantage is that, if Akk is a b x b block, you revisit the Ak sub-
block only n/b times, and thus need fewer memory accesses. 
An order-of-magnitude faster. (LAPACK vs. LINPACK)  



Matlab demo, gauss2.m 

•  Blue curve is rank-1 update 
•  Red curve is rank-4 update 
•  Black curve is matlab lu() 

function 
•  It uses a 4 CPUs on the 

Mac and achieves an 
impressive 50 Gflops, 
which is very near peak 

•  Note that the black curve 
represents a 100-200x 
speed up over a naïve 
rank-1 update approach. 



Matlab demo, gauss2.m 





Next Topics 

❑  Pivoting / zeros & stability 
❑  Approach 
❑  Permutation Matrices 
❑  Stability 
❑  Cost 

❑  Sherman Morrison 

❑  Computing matrix 2-norm 

❑  SPD / Cholesky Factorization 

❑  Banded Factorization 
❑  Approach 
❑  Cost 

 



Generating Upper Triangular Systems: LU Factorization

• Example:

2

6666664

1 2 3

4 4 6 1

8 8 9 2

6 1 3 3

4 2 8 4

3

7777775

2

6666664

x1

x2

x3

x4

x5

3

7777775
=

2

6666664

0

4

4

4

4

3

7777775

• First column is already in upper triangular form.

• Eliminate second column:

row3  � row3 �
8

4
⇥ row2

row4  � row4 �
6

4
⇥ row2

row5  � row5 �
4

4
⇥ row2

2

6666664

1 2 3

4 4 6 1

0 �3 0

�5 �6 3
2

�2 2 3

3

7777775

2

6666664

x1

x2

x3

x4

x5

3

7777775
=

2

6666664

0

4

�4
�2
0

3

7777775

• a22 = 4 is the pivot

• row2 is the pivot row

• l32 =
8
4 , l42 =

6
4 , l52 =

4
4 , is the multiplier column.

Recall our earlier example:  



Generating Upper Triangular Systems: LU Factorization

• Augmented form. Store b in A(:, n+ 1):

2

6666664

1 2 3 0

4 4 6 1 4

8 8 9 2 4

6 1 3 3 4

4 2 8 4 4

3

7777775
�!

2

6666664

1 2 3 0

4 4 6 1 4

0 �3 0 �4

�5 �6 3
2 �2

�2 2 3 0

3

7777775

This Case. General Case.

pivot = 4 = akk when zeroing the kth column.

pivot row = [ 4 6 1 | 4 ] = r

T
k = akj, j = k + 1, . . . , n [ + bk ]

multiplier column =
1

4

2

64
8

6

4

3

75 = ck =
aik

akk
, i = k + 1, . . . , n

=

2

64
2
3
2

1

3

75
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Generating Upper Triangular Systems: LU Factorization

• Augmented form. Store b in A(:, n+ 1):
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pivot = 4 = akk when zeroing the kth column.

pivot row = [ 4 6 1 | 4 ] = r

T
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1

4
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8
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4

3

75 = ck =
aik

akk
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=

2

64
2
3
2

1

3

75

Using LU Factorization in Practice

• Give LU = A, we can solve Ax = b as follows:

Given: Ax = LU x = b

L (U x) = Lb = b

Solve: Ly = b

Ux = y

• We have seen already that the total solve cost (for L and U solves) is 2⇥ n2
.

• What about the factor cost, A �! LU ?

ck �! lk, store as column k of L.



Pivoting

• We return to our original 5⇥ 5 example. The next step would be:

2

6666664

1 2 3 0

4 4 6 1 4

0 �3 0 �4

�5 �6 3
2 �2

�2 2 3 0

3

7777775

• Here, we have di�ulty because the nominal pivot, a33 is zero.

• The remedy is to exchange rows with one of the remaining two, since
the order of the equations is immaterial.

• For numerical stability, we choose the row that maximizes |aik|.

• This choice ensures that all entries in the multiplier column are less than
one in modulus.



Next Step: k = k + 1

• After switching rows, we have

2

6666664

1 2 3 0

4 4 6 1 4

�5 �6 3
2 �2

0 �3 0 �4

�2 2 3 0

3

7777775
�!

2

6666664

1 2 3 0

4 4 6 1 4

�5 �6 3
2 �2

0 �3 0 �4

0 42
5 22

5
4
5

3

7777775

pivot = �5

pivot row =


�6

3

2
| � 2

�

multiplier column =
1

�5

"
0

�2

#
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Row Interchanges

Gaussian elimination breaks down if leading diagonal entry
of remaining unreduced matrix is zero at any stage
Easy fix: if diagonal entry in column k is zero, then
interchange row k with some subsequent row having
nonzero entry in column k and then proceed as usual
If there is no nonzero on or below diagonal in column k,
then there is nothing to do at this stage, so skip to next
column
Zero on diagonal causes resulting upper triangular matrix
U to be singular, but LU factorization can still be completed
Subsequent back-substitution will fail, however, as it should
for singular matrix
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Partial Pivoting

In principle, any nonzero value will do as pivot, but in
practice pivot should be chosen to minimize error
propagation

To avoid amplifying previous rounding errors when
multiplying remaining portion of matrix by elementary
elimination matrix, multipliers should not exceed 1 in
magnitude

This can be accomplished by choosing entry of largest
magnitude on or below diagonal as pivot at each stage

Such partial pivoting is essential in practice for numerically
stable implementation of Gaussian elimination for general
linear systems < interactive example >
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LU Factorization with Partial Pivoting

With partial pivoting, each Mk is preceded by permutation
Pk to interchange rows to bring entry of largest magnitude
into diagonal pivot position
Still obtain MA = U , with U upper triangular, but now

M = Mn�1Pn�1 · · ·M1P1

L = M

�1 is still triangular in general sense, but not
necessarily lower triangular
Alternatively, we can write

PA = LU

where P = Pn�1 · · ·P1 permutes rows of A into order
determined by partial pivoting, and now L is lower
triangular
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Complete Pivoting

Complete pivoting is more exhaustive strategy in which
largest entry in entire remaining unreduced submatrix is
permuted into diagonal pivot position
Requires interchanging columns as well as rows, leading
to factorization

PAQ = LU

with L unit lower triangular, U upper triangular, and P and
Q permutations
Numerical stability of complete pivoting is theoretically
superior, but pivot search is more expensive than for partial
pivoting
Numerical stability of partial pivoting is more than
adequate in practice, so it is almost always used in solving
linear systems by Gaussian elimination
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Example: Permutations

Permutation matrix P has one 1 in each row and column
and zeros elsewhere, i.e., identity matrix with rows or
columns permuted

Note that P�1
= P

T

Premultiplying both sides of system by permutation matrix,
PAx = Pb, reorders rows, but solution x is unchanged

Postmultiplying A by permutation matrix, APx = b,
reorders columns, which permutes components of original
solution

x = (AP )

�1
b = P

�1
A

�1
b = P

T
(A

�1
b)
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Comments About Permutation Matrices 

❑  As with A-1, we never actually form them – we simply use pointers to swap 
rows (or columns). 

❑  However, they are notationally convenient, and can be constructed from 
elementary permutation matrices that swap just two rows, e.g.  If Pij is the 
identity matrix with rows i and j swapped, then we have: 

    Pij
-1 = Pij

T = Pij 

      So applying Pij twice brings two rows back to their original position. 
 

❑  We can construct a compound permutation matrix as the product of these 
swaps, e.g., P = P21P43 

❑  The compound permutation matrix is not symmetric, but we still have 
 
                          P-1 = PT = P43

T P21
T = P43

 P21 



perm.m 
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Example: Pivoting

Need for pivoting has nothing to do with whether matrix is
singular or nearly singular
For example,

A =


0 1

1 0

�

is nonsingular yet has no LU factorization unless rows are
interchanged, whereas

A =


1 1

1 1

�

is singular yet has LU factorization
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Example: Small Pivots
To illustrate effect of small pivots, consider

A =


✏ 1

1 1

�

where ✏ is positive number smaller than ✏mach
If rows are not interchanged, then pivot is ✏ and multiplier is
�1/✏, so

M =


1 0

�1/✏ 1

�
, L =


1 0

1/✏ 1

�
,

U =


✏ 1

0 1� 1/✏

�
=


✏ 1

0 �1/✏

�

in floating-point arithmetic, but then

LU =


1 0

1/✏ 1

� 
✏ 1

0 �1/✏

�
=


✏ 1

1 0

�
6= A
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Example, continued

Using small pivot, and correspondingly large multiplier, has
caused loss of information in transformed matrix
If rows interchanged, then pivot is 1 and multiplier is �✏, so

M =


1 0

�✏ 1

�
, L =


1 0

✏ 1

�
,

U =


1 1

0 1� ✏

�
=


1 1

0 1

�

in floating-point arithmetic
Thus,

LU =


1 0

✏ 1

� 
1 1

0 1

�
=


1 1

✏ 1

�

which is correct after permutation
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Pivoting: 

❑  Moving small pivots down moves us closer to upper triangular form, 
with no round-off. 

❑  A general principle in numerical computing regarding round-off: 
 Small corrections are preferred to large ones. 

 
❑  Failure to exchange a small pivot on the diagonal can result in all 

subsequent rows looking like multiples of the current pivot row à 
singular submatrix.   



Failure to pivot can result in all subsequent rows 
looking like multiples of the kth row: 

❑  Consider 

❑  Matlab example “pivot.m” 



pivot_gui.m 



Failure to Pivot, Noncatastrophic Case 

❑  In cases where the nominal pivot is small but > ²M, we  are 
effectively reducing the number of significant digits that represent 
the remainder of the matrix A. 

❑  In essence, we are driving the rows (or columns) to be similar, 
which is equivalent to saying that we have nearly parallel 
columns. 

❑  We will see next time a 2 x 2 example where the condition 
number of the matrix with 2 unit-norm vectors scales like 2 / µ , 
where µ is the (small) angle between the column vectors. 



Partial Pivoting: Costs

Procedure:

• For each k, pick k0
such that |ak0k| � |aik|, i � k.

• Swap rows k and k0
.

• Proceed with central update step: A(k+1)
= A(k) � ck r

T
k

Costs:

• For each step, search is O(n� k), total cost is ⇡ n2/2.

• For each step, row swap is O(n� k), total cost is ⇡ n2/2.

• Total cost for partial pivoting is O(n2
)�2n3/3.

• If we use full pivoting, total search cost such that

|ak0k00 | � |aij|, i, j � k, is O(n3
).

• Row and column exchange costs still total only O(n2
).

Notes:

• Partial (row) pivoting ensures that multiplier column entries

have modulus  1. (Good.)

• Full pivoting also destroys band structure, whereas partial

pivoting leaves some band structure intact.



Partial Pivoting: LU=PA

• Note: If we swap rows of A, we are swapping equations.

• We must swap rows of b.

• LU routines normally return the pivot index vector to e↵ect this exchange.

• Nominally, it looks like a permutation matrix P , which is simply the identity matrix

with rows interchanged.

• If we swap equations, we must also swap rows of L

• If we are consistent, we can swap rows at any time (i.e., A, or L) and get the same final

factorization: LU = PA.

• Most codes swap A(k+1)
, but not the factors in L that have already been stored.

• Swapping rows of A(k+1)
helps with speed (vectorization) of A(k+1)

= A(k) � ck r
T
k .

• In parallel computing, one would not swap the pivot row. Just pass the pointer to the

processor holding the new pivot row, where the swap would take place locally.
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Pivoting, continued

Although pivoting is generally required for stability of
Gaussian elimination, pivoting is not required for some
important classes of matrices

Diagonally dominant

nX

i=1, i 6=j

|aij | < |ajj |, j = 1, . . . , n

Symmetric positive definite

A = A

T and x

T
Ax > 0 for all x 6= 0
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Uniqueness of LU Factorization

Despite variations in computing it, LU factorization is
unique up to diagonal scaling of factors

Provided row pivot sequence is same, if we have two LU
factorizations PA = LU =

ˆ

L

ˆ

U , then ˆ

L

�1
L =

ˆ

UU

�1
= D

is both lower and upper triangular, hence diagonal

If both L and ˆ

L are unit lower triangular, then D must be
identity matrix, so L =

ˆ

L and U =

ˆ

U

Uniqueness is made explicit in LDU factorization
PA = LDU , with L unit lower triangular, U unit upper
triangular, and D diagonal
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Storage Management

Elementary elimination matrices Mk, their inverses Lk,
and permutation matrices Pk used in formal description of
LU factorization process are not formed explicitly in actual
implementation

U overwrites upper triangle of A, multipliers in L overwrite
strict lower triangle of A, and unit diagonal of L need not
be stored

Row interchanges usually are not done explicitly; auxiliary
integer vector keeps track of row order in original locations
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Inversion vs. Factorization

Even with many right-hand sides b, inversion never
overcomes higher initial cost, since each matrix-vector
multiplication A

�1
b requires n

2 operations, similar to cost
of forward- and back-substitution
Inversion gives less accurate answer; for example, solving
3x = 18 by division gives x = 18/3 = 6, but inversion gives
x = 3

�1 ⇥ 18 = 0.333⇥ 18 = 5.99 using 3-digit arithmetic
Matrix inverses often occur as convenient notation in
formulas, but explicit inverse is rarely required to
implement such formulas
For example, product A�1

B should be computed by LU
factorization of A, followed by forward- and
back-substitutions using each column of B
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Band Matrices

Gaussian elimination for band matrices differs little from
general case — only ranges of loops change

Typically matrix is stored in array by diagonals to avoid
storing zero entries

If pivoting is required for numerical stability, bandwidth can
grow (but no more than double)

General purpose solver for arbitrary bandwidth is similar to
code for Gaussian elimination for general matrices

For fixed small bandwidth, band solver can be extremely
simple, especially if pivoting is not required for stability
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Tridiagonal Matrices

Consider tridiagonal matrix

A =

2

66666664

b1 c1 0 · · · 0

a2 b2 c2
. . .

...

0

. . . . . . . . .
0

...
. . .

an�1 bn�1 cn�1

0 · · · 0 an bn

3

77777775

Gaussian elimination without pivoting reduces to
d1 = b1

for i = 2 to n

mi = ai/di�1

di = bi �mici�1

end
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Tridiagonal Matrices, continued

LU factorization of A is then given by

L =

2

66666664

1 0 · · · · · · 0

m2 1

. . .
...

0

. . . . . . . . .
...

...
. . .

mn�1 1 0

0 · · · 0 mn 1

3

77777775

, U =

2

66666664

d1 c1 0 · · · 0

0 d2 c2
. . .

...
...

. . . . . . . . .
0

...
. . .

dn�1 cn�1

0 · · · · · · 0 dn

3

77777775
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Example of Banded Systems 

❑  Graphs (i.e., matrices) arising from differential equations in 1D, 
2D, 3D (and higher…) are generally banded and sparse. 

❑  Example: 



In Matrix Form 

❑  Banded, tridiagonal matrix (“1D Poisson Operator”) 



Some Hints For HW1

• Consider the tridiagonal matrix system, Ax = f ,
0

BBBBB@

b1 c1
a2 b2 c2

a3
. . . . . .
. . . . . . cn�1

an bn

1

CCCCCA

| {z }
A

0

BBBBB@

x1

x2
...
...
xn

1

CCCCCA

| {z }
x

=

0

BBBBB@

f1
f2
...
...
fn

1

CCCCCA

| {z }
f

.

• When solving this system, one only needs to store five vectors of length
O(n), namely, a, b, c, x, and f . (Often, the solution is overwritten
onto f , so you don’t actually need x.) The code provided implements a
tridiagonal system solve for this class of problems.

• Gaussian elimination for this system leads to the following pseudocode
for the forward solve:

for i=2:n

ai = ai/bi�1 % Store row multiplier.

bi = bi � ai ⇤ ci�1 % Update row i of A.

fi = fi � ai ⇤ fi�1 % Update row i of f .

end

• The preceding loop factors the matrix A into the product LU = A, where
L is unit-lower triangular and U is upper triangular. It also maps the
original right-hand side to f  � L�1f .

• The remaining step is to compute x � U�1f :
0

BBBBB@

b1 c1
b2 c2

. . . . . .
. . . cn�1

bn

1

CCCCCA

| {z }
U

0

BBBBB@

x1

x2
...
...
xn

1

CCCCCA

| {z }
x

=

0

BBBBB@

f1
f2
...
...
fn

1

CCCCCA

| {z }
f

.

• Pseudocode for this system is

xn = fn / bn

for i=(n-1):1

xi =
1

bi
(fi � ci ⇤ xi+1)

end
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• When solving this system, one only needs to store five vectors of length
O(n), namely, a, b, c, x, and f . (Often, the solution is overwritten
onto f , so you don’t actually need x.) The code provided implements a
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for the forward solve:
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end

• The preceding loop factors the matrix A into the product LU = A, where
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original right-hand side to f  � L�1f .

• The remaining step is to compute x � U�1f :
0
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b1 c1
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. . . . . .
. . . cn�1

bn
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| {z }
U

0

BBBBB@
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=
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.

• Pseudocode for this system is

xn = fn / bn

for i=(n-1):1

xi =
1

bi
(fi � ci ⇤ xi+1)

end



• For the HW, you are asked to solve a periodic matrix, which can be cast
in the following form

0

BBBBBBB@

b1 c1 d1
a2 b2 c2 d2

a3
. . . . . .

...
. . . . . . cn�2 dn�2

an�1 bn�1 dn�1

e1 e2 · · · en�2 en�1 dn

1

CCCCCCCA

| {z }
A

0

BBBBB@

x1

x2
...
...
xn

1

CCCCCA

| {z }
x

=

0

BBBBB@

f1
f2
...
...
fn

1

CCCCCA

| {z }
f

.

• Factorization of the principal (leading) (n � 1) ⇥ (n � 1) tridiagonal
submatrix will proceed as before.

• In addition, you’ll need to update the last row (eT ) and column (d).

• When you get to the final 2⇥ 2 block you have interactions between the
b, e, and d vectors that should be treated outside of the for loop.

• Proceed with standard Gaussian elimination for this phase and then with
backward substitution for the remaining upper triangular system.
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General Band Matrices

In general, band system of bandwidth � requires O(�n)

storage, and its factorization requires O(�

2
n) work

Compared with full system, savings is substantial if � ⌧ n
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Banded Systems 

❑  Significant savings in storage and work if A is banded à aij = 0 if  | i-j | > ¯ 

❑  The LU factors preserve the nonzero structure of A (unless there is pivoting, in 
which case, the bandwidth of L can grow by at most 2x). 

❑  Storage / solve costs for LU is ~ 2n ¯ 

❑  Factor cost is ~ n ¯ 2  <<  n 3 



Definitely Do Not Invert A or L or U for Banded Systems 

A L 

U U-1 



Solver Times, Banded, Cholesky (SPD), Full 

System Size, n 

Fa
ct
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Solver Times, Banded, Cholesky (SPD), Full 



Cost of Banded Factorization 

❑  Active submatrix for matrix 
with bandwidth b is ( b x b ). 

❑  Work for outer product is 
crT,  which is outer product 
of two vectors of length b. 

❑  So, total work is ~  n x (b2) 
x 2 operations to convert A 
into LU. 

❑  If we have pivoting, then 
bandwidth of U can grow by 
2x. 



Cost of Banded Factorization 

❑  Pivoting can pull a row that 
has 2b nonzeros to right of 
diagonal. 

❑  U can end up with 
bandwidth 2b. 



Cost of Banded Factorization 

❑  Pivoting can pull a row that 
has 2b nonzeros to right of 
diagonal. 

❑  U can end up with 
bandwidth 2b. 



Cost of Banded Factorization 

❑  Pivoting can pull a row that 
has 2b nonzeros to right of 
diagonal. 

❑  U can end up with 
bandwidth 2b. 



pivot_gui2 demo 
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LINPACK and LAPACK

LINPACK is software package for solving wide variety of
systems of linear equations, both general dense systems
and special systems, such as symmetric or banded

Solving linear systems of such fundamental importance in
scientific computing that LINPACK has become standard
benchmark for comparing performance of computers

LAPACK is more recent replacement for LINPACK featuring
higher performance on modern computer architectures,
including some parallel computers

Both LINPACK and LAPACK are available from Netlib

Michael T. Heath Scientific Computing 86 / 88



Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

LINPACK and LAPACK
BLAS

Basic Linear Algebra Subprograms

High-level routines in LINPACK and LAPACK are based on
lower-level Basic Linear Algebra Subprograms (BLAS)
BLAS encapsulate basic operations on vectors and
matrices so they can be optimized for given computer
architecture while high-level routines that call them remain
portable
Higher-level BLAS encapsulate matrix-vector and
matrix-matrix operations for better utilization of memory
hierarchies such as cache and virtual memory with paging
Generic Fortran versions of BLAS are available from
Netlib, and many computer vendors provide custom
versions optimized for their particular systems

Michael T. Heath Scientific Computing 87 / 88



Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

LINPACK and LAPACK
BLAS

Examples of BLAS

Level Work Examples Function
1 O(n) saxpy Scalar ⇥ vector + vector

sdot Inner product
snrm2 Euclidean vector norm

2 O(n

2
) sgemv Matrix-vector product

strsv Triangular solution
sger Rank-one update

3 O(n

3
) sgemm Matrix-matrix product

strsm Multiple triang. solutions
ssyrk Rank-k update

Level-3 BLAS have more opportunity for data reuse, and
hence higher performance, because they perform more
operations per data item than lower-level BLAS
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Vector Norms

Magnitude, modulus, or absolute value for scalars
generalizes to norm for vectors

We will use only p-norms, defined by

kxkp =
 

nX

i=1

|xi|p
!1/p

for integer p > 0 and n-vector x

Important special cases
1-norm: kxk1 =

Pn
i=1|xi|

2-norm: kxk2 =

�Pn
i=1 |xi|2

�1/2

1-norm: kxk1 = maxi |xi|
Michael T. Heath Scientific Computing 9 / 88
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Example: Vector Norms
Drawing shows unit sphere in two dimensions for each
norm

Norms have following values for vector shown

kxk1 = 2.8 kxk2 = 2.0 kxk1 = 1.6

< interactive example >
Michael T. Heath Scientific Computing 10 / 88
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Equivalence of Norms

In general, for any vector x in Rn, kxk1 � kxk2 � kxk1
However, we also have

kxk1 
p
n kxk2, kxk2 

p
n kxk1, kxk1  n kxk1

Thus, for given n, norms differ by at most a constant, and
hence are equivalent: if one is small, they must all be
proportionally small.
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Equivalence of Norms

In general, for any vector x in Rn, kxk1 � kxk2 � kxk1
However, we also have

kxk1 
p
n kxk2, kxk2 

p
n kxk1, kxk1  n kxk1

Thus, for given n, norms differ by at most a constant, and
hence are equivalent: if one is small, they must all be
proportionally small.
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❑  Important Point:  Equivalence of Norms (for n fixed): 
For all vector norms ||x||m and ||x||M  9 constants c and C such that 

                         c ||x||m  · ||x||M · C ||x||m 

      Allows us to work with the norm that is most convenient. 
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Properties of Vector Norms

For any vector norm
kxk > 0 if x 6= 0

k�xk = |�| · kxk for any scalar �
kx+ yk  kxk+ kyk (triangle inequality)

In more general treatment, these properties taken as
definition of vector norm

Useful variation on triangle inequality
| kxk � kyk |  kx� yk
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Matrix Norms

Matrix norm corresponding to given vector norm is defined
by

kAk = max

x 6=0
kAxk
kxk

Norm of matrix measures maximum stretching matrix does
to any vector in given vector norm

Michael T. Heath Scientific Computing 13 / 88

Example…. 



Matrix Norms 

❑  Often called the induced or subordinate matrix norm associated 
with the vector norm ||x||* 
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Matrix Norms

Matrix norm corresponding to vector 1-norm is maximum
absolute column sum

kAk1 = max

j

nX

i=1

|aij |

Matrix norm corresponding to vector 1-norm is maximum
absolute row sum

kAk1 = max

i

nX

j=1

|aij |

Handy way to remember these is that matrix norms agree
with corresponding vector norms for n⇥ 1 matrix

Michael T. Heath Scientific Computing 14 / 88



Matrix Norms:  2-norm 

 
❑  The 2-norm of a symmetric matrix is maxi  |¸i

|
 

❑  Here, ¸i is the ith eigenvalue of A 

❑  We say A is symmetric if  aij = aji for I,j 2 {1,2,…,n}2 

❑  That is, A = AT  (A is equal to its transpose) 



Symmetric Matrices

A =

2

4
1 4 �2

4 2 �5

�2 �5 3

3

5
= AT

B =

2

4
1 4 �2

4 2 �5

0 �5 3

3

5

BT
=

2

4
1 4 0

4 2 �5

�2 �5 3

3

5

• A is symmetric: aij = aji for all i, j.

• B is nonsymmetric: bij 6= bji for all i, j.

• Many (many) systems give rise to symmetric matrices.
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Properties of Matrix Norms

Any matrix norm satisfies
kAk > 0 if A 6= 0

k�Ak = |�| · kAk for any scalar �
kA+Bk  kAk+ kBk

Matrix norms we have defined also satisfy
kABk  kAk · kBk
kAxk  kAk · kxk for any vector x
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Matrix Norm Example

• Matrix norms are particularly useful in analyzing iterative solvers.

• Consider the system Ax = b to be solved with the following iterative scheme.

• Start with initial guess x0 = 0 and, for k=0, 1, . . . ,

xk+1 = xk + M (b� Axk ) . (1)

• Let G := I �MA. We can use the matrix norm of G to bound the error in the
above iteration and determine its rate of convergence.

• Begin by defining the error to be ek := x� xk.

• Note that b� Axk = Ax� Axk = A(x� xk) = Aek.

• Using the preceding result and subtracting (1) from the equation x = x yields
the error equation

ek+1 = ek � M A ek = [ I �MA] ek = G ek.



Matrix Norm Example

• Error equation

ek+1 = ek � M A ek = [ I �MA] ek = G ek.

• From the definition of the matrix norm, we have

||ek||  ||G|| ||ek�1||  ||G||2 ||ek�2|| . . .  ||G||k ||e0||

• With x0 = 0, we have e0 = x and thus the relative error

||ek||
||x||  ||G||k

• If ||G|| < 1, the scheme (1) is convergent.

• By the equivalence of norms, if ||G|| < 1 for any matrix norm, it is convergent.

• Q: Suppose ||G||  0.25. What is the bound on the number of iterations
required to converge to machine precision in IEEE 64-bit arithmetic? (Hint:
Think carefully. What is the best base to use in considering this question?)



Matrix Norm Example

• Consider the following example:

A = nI + 0.1R, R = rand(n, n) rij 2 [0, 1]

M = diag(1/aii)

• In this case,
gii = 0

gij = 0.1
�rij

n+ 0.1rii

• The 1-norm for G is given by

||G||1 = max
i

nX

j=1

|gij|  max
i

X

i 6=j

M

⇤ = (n� 1)M⇤
,

where

M

⇤ := max
i 6=j

|gij| <
0.1

n

.

• In this case, we have a relative error bounded by ||G||k1  (0.1)k.

• Q: Estimate the number of iterations required to reduce the error to machine
epsilon when using IEEE 64-bit floating point arithmetic.
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Condition Number

Condition number of square nonsingular matrix A is
defined by

cond(A) = kAk · kA�1k
By convention, cond(A) = 1 if A is singular

Since

kAk · kA�1k =

✓
max

x 6=0

kAxk
kxk

◆
·
✓
min

x 6=0

kAxk
kxk

◆�1

condition number measures ratio of maximum stretching to
maximum shrinking matrix does to any nonzero vectors

Large cond(A) means A is nearly singular
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Properties of Condition Number

For any matrix A, cond(A) � 1

For identity matrix, cond(I) = 1

For any matrix A and scalar �, cond(�A) = cond(A)

For any diagonal matrix D = diag(di), cond(D) =

max |di|
min |di|

< interactive example >
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Computing Condition Number

Definition of condition number involves matrix inverse, so it
is nontrivial to compute

Computing condition number from definition would require
much more work than computing solution whose accuracy
is to be assessed

In practice, condition number is estimated inexpensively as
byproduct of solution process

Matrix norm kAk is easily computed as maximum absolute
column sum (or row sum, depending on norm used)

Estimating kA�1k at low cost is more challenging

Michael T. Heath Scientific Computing 18 / 88
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Computing Condition Number, continued

From properties of norms, if Az = y, then

kzk
kyk  kA�1k

and bound is achieved for optimally chosen y

Efficient condition estimators heuristically pick y with large
ratio kzk/kyk, yielding good estimate for kA�1k
Good software packages for linear systems provide
efficient and reliable condition estimator
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Error Bounds

Condition number yields error bound for computed solution
to linear system

Let x be solution to Ax = b, and let ˆx be solution to
A

ˆ

x = b+�b

If �x =

ˆ

x� x, then

b+�b = A(

ˆ

x) = A(x+�x) = Ax+A�x

which leads to bound

k�xk
kxk  cond(A)

k�bk
kbk

for possible relative change in solution x due to relative
change in right-hand side b < interactive example >
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Condition Number and Relative Error: Ax = b.

• Want to solve Ax = b, but computed rhs is:

b

0
= b + �b,

where we anticpate

||�b||
||b|| ⇡  ✏M .

• Net result is we end up solving Ax0
= b

0
and want to know how large is the

relative error, x

0
= x+�x,

||�x||
||x|| ?

• Since Ax0
= b

0
and (by definition) Ax = b, we have:

||�x||  ||A�1|| ||�b||

||b||  ||A|| ||x||

1

||x||  ||A|| 1

||b||

�x

||x||  ||A|| �x

||b||

 ||A|| ||A�1|| �b

||b||

= cond(A)
�b

||b|| .

• Key point: If cond(A)=10

k
, then expected relative error is ⇡ 10

k✏M ,

meaning that you will lose k digits (of 16, if ✏M ⇡ 10

�16
.



Illustration of Impact of cond(A) 

²M * cond(A) 

|| u-A\f ||1 Here, we see that ²M * cond(A) 
bounds the error in the solution to Au=f, 
as expected. 

h 

E
rr

or
  a

nd
 E

rr
or

 b
ou

nd
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Error Bounds, continued

Similar result holds for relative change in matrix: if
(A+E)

ˆ

x = b, then

k�xk
kˆxk  cond(A)

kEk
kAk

If input data are accurate to machine precision, then bound
for relative error in solution x becomes

kˆx� xk
kxk  cond(A) ✏mach

Computed solution loses about log10(cond(A)) decimal
digits of accuracy relative to accuracy of input
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A Nearly Singular Example

a1

a2

✓

A =

⇥
a1 a2

⇤
=


1 c
0 s

�

c = cos ✓, s = sin ✓.

• Clearly, as ✓ �! 0 the matrix becomes singular.

• Can show that

cond =

s
1 + |c|
1� |c|

⇡ 2

✓

for small ✓ (by Taylor series!) matlab demo.



Matlab Demo  cr2.m 
This example plots cond(A) as a function of µ, as well as the  estimates from the preceding slide. 

q  The computed value of cond(A) given by matlab exactly matches [ (1+|cos µ | ) / (1-|cos µ | ) ]1/2    

q  The more interesting result is  cond(A) ~ 2 / µ, which is very accurate for small angles. 
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Error Bounds – Illustration

In two dimensions, uncertainty in intersection point of two
lines depends on whether lines are nearly parallel

< interactive example >
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Error Bounds – Caveats

Normwise analysis bounds relative error in largest

components of solution; relative error in smaller
components can be much larger

Componentwise error bounds can be obtained, but
somewhat more complicated

Conditioning of system is affected by relative scaling of
rows or columns

Ill-conditioning can result from poor scaling as well as near
singularity
Rescaling can help the former, but not the latter
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Residual

Residual vector of approximate solution ˆ

x to linear system
Ax = b is defined by

r = b�A

ˆ

x

In theory, if A is nonsingular, then kˆx� xk = 0 if, and only
if, krk = 0, but they are not necessarily small
simultaneously

Since k�xk
kˆxk  cond(A)

krk
kAk · kˆxk

small relative residual implies small relative error in
approximate solution only if A is well-conditioned
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Residual, continued

If computed solution ˆ

x exactly satisfies

(A+E)

ˆ

x = b

then krk
kAk kˆxk  kEk

kAk
so large relative residual implies large backward error in
matrix, and algorithm used to compute solution is unstable

Stable algorithm yields small relative residual regardless of
conditioning of nonsingular system

Small residual is easy to obtain, but does not necessarily
imply computed solution is accurate
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Scaling Linear Systems

In principle, solution to linear system is unaffected by
diagonal scaling of matrix and right-hand-side vector

In practice, scaling affects both conditioning of matrix and
selection of pivots in Gaussian elimination, which in turn
affect numerical accuracy in finite-precision arithmetic

It is usually best if all entries (or uncertainties in entries) of
matrix have about same size

Sometimes it may be obvious how to accomplish this by
choice of measurement units for variables, but there is no
foolproof method for doing so in general

Scaling can introduce rounding errors if not done carefully
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Example: Scaling

Linear system 
1 0

0 ✏

� 
x1

x2

�
=


1

✏

�

has condition number 1/✏, so is ill-conditioned if ✏ is small

If second row is multiplied by 1/✏, then system becomes
perfectly well-conditioned

Apparent ill-conditioning was due purely to poor scaling

In general, it is usually much less obvious how to correct
poor scaling
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Solving Modified Problems

If right-hand side of linear system changes but matrix does
not, then LU factorization need not be repeated to solve
new system

Only forward- and back-substitution need be repeated for
new right-hand side

This is substantial savings in work, since additional
triangular solutions cost only O(n

2
) work, in contrast to

O(n

3
) cost of factorization
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Sherman-Morrison Formula

Sometimes refactorization can be avoided even when
matrix does change

Sherman-Morrison formula gives inverse of matrix
resulting from rank-one change to matrix whose inverse is
already known

(A� uv

T
)

�1
= A

�1
+A

�1
u(1� v

T
A

�1
u)

�1
v

T
A

�1

where u and v are n-vectors

Evaluation of formula requires O(n

2
) work (for

matrix-vector multiplications) rather than O(n

3
) work

required for inversion
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Rank-One Updating of Solution

To solve linear system (A� uv

T
)x = b with new matrix,

use Sherman-Morrison formula to obtain

x = (A� uv

T
)

�1
b

= A

�1
b+A

�1
u(1� v

T
A

�1
u)

�1
v

T
A

�1
b

which can be implemented by following steps
Solve Az = u for z, so z = A

�1
u

Solve Ay = b for y, so y = A

�1
b

Compute x = y + ((v

T
y)/(1� v

T
z))z

If A is already factored, procedure requires only triangular
solutions and inner products, so only O(n

2
) work and no

explicit inverses
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Example: Rank-One Updating of Solution

Consider rank-one modification
2

4
2 4 �2

4 9 �3

�2 �1 7

3

5

2

4
x1

x2

x3

3

5
=

2

4
2

8

10

3

5

(with 3, 2 entry changed) of system whose LU factorization
was computed in earlier example
One way to choose update vectors is

u =

2

4
0

0

�2

3

5 and v =

2

4
0

1

0

3

5

so matrix of modified system is A� uv

T
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Example, continued

Using LU factorization of A to solve Az = u and Ay = b,

z =

2

4
�3/2

1/2

�1/2

3

5 and y =

2

4
�1

2

2

3

5

Final step computes updated solution

x = y +

v

T
y

1� v

T
z

z =

2

4
�1

2

2

3

5
+

2

1� 1/2

2

4
�3/2

1/2

�1/2

3

5
=

2

4
�7

4

0

3

5

We have thus computed solution to modified system
without factoring modified matrix

Michael T. Heath Scientific Computing 71 / 88

Q: Under what circumstances could the 
denominator be zero ? 



Sherman Morrison 

[1] Solve A˜

x =

˜

b:

A �! LU ( O(n3
) work )

Solve L˜y =

˜

b,

Solve U ˜

x =

˜

y ( O(n2
) work ).

[2] New problem:�
A� uv

T
�
x = b. (di↵erent x and b)

Key Idea:

•
�
A� uv

T
�
x di↵ers from Ax by

only a small amount of information.

• Rewrite as: Ax+ u� = b

� := �vT
x  ! v

T
x+ � = 0
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Extended system:

Ax+ �u = b

v

T
x+ � = 0
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Extended system:

Ax+ �u = b

v

T
x+ � = 0

In matrix form:


A u

v

T
1

�✓
x

�

◆
=

✓
b

0

◆
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Extended system:

Ax+ �u = b

v

T
x+ � = 0

In matrix form:


A u

v

T
1

�✓
x

�

◆
=

✓
b

0

◆

Eliminate for �:

A u

0 1� v

TA�1
u

�✓
x

�

◆
=

✓
b

�v

TA�1
b

◆
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Extended system:

Ax+ �u = b

v

T
x+ � = 0

In matrix form:


A u

v

T
1

�✓
x

�

◆
=

✓
b

0

◆

Eliminate for �:

A u

0 1� v

TA�1
u

�✓
x

�

◆
=

✓
b

�v

TA�1
b

◆

� = �
�
1� v

TA�1
u

��1
v

TA�1
b

x = A�1
(b� u�) = A�1

h
b+ u

�
1� v

TA�1
u

��1
v

TA�1
b

i
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Extended system:

Ax+ �u = b

v

T
x+ � = 0

In matrix form:


A u

v

T
1

�✓
x

�

◆
=

✓
b

0

◆

Eliminate for �:

A u

0 1� v

TA�1
u

�✓
x

�

◆
=

✓
b

�v

TA�1
b

◆

� = �
�
1� v

TA�1
u

��1
v

TA�1
b

x = A�1
(b� u�) = A�1

h
b+ u

�
1� v

TA�1
u

��1
v

TA�1
b

i
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TA�1
b

i

�
A� uv

T
��1

= A�1
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Sherman Morrison:  Potential Singularity 

• Consider the modified system:

�
A� uv

T
�
x = b.

• The solution is

x =

�
A� uv

T
��1

b

=

h
I + A�1

u

�
1� v

TA�1
u

��1
v

TA�1
i
A�1

b.

• If 1 � v

TA�1
u = 0, failure.

• Why?

• Let

˜A :=

�
A� uv

T
�
and consider,

˜AA�1
=

�
A� uv

T
�
A�1

=

�
I � uv

TA�1
�
.

• Look at the product

˜AA�1
u,

˜AA�1
u =

�
I � uv

TA�1
�
u

= u� uv

TA�1
u.

• If v

TA�1
u = 0, then

˜AA�1
u = u� u = 0,

which means that

˜A is singular since we assume that A�1
exists.

• Thus, an unfortunate choice of u and v can lead to a singular

modified matrix and this singularity is indicated by v

TA�1
u = 1.
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Computing ||A||
2

and cond

2

(A).

• Recall:

cond(A) := ||A�1 || · ||A ||,

||A || := max

x 6=0

||Ax ||
||x || ,

||x ||
2

=

 
nX

i=1

x

2

i

! 1
2

=

p
x

T
x,

||x ||2
2

= x

T
x.

• From now on, drop the subscript “

2

”.

||x ||2 = x

T
x

||Ax ||2 = (Ax)

T
(Ax) = x

T
A

T
Ax.



• Matrix norm:

||A ||2 = max

x 6=0

||Ax ||2

||x ||2 ,

= max

x 6=0

x

T
A

T
Ax

x

T
x

= �

max

(A

T
A) =: spectral radius of (A

T
A).

• The symmetric positive definite matrix B := A

T
A has positive

eigenvalues.

• All symmetric matrices B have a complete set of orthonormal

eigenvectors satisfying

Bzj = �j zj, z

T
i zj = �ij =

⇢
1 i = j

0 i 6= j

.

• Note: If �i = �j, i 6= j, then can have z

T
i zj 6= 0, but we can

orthogonalize zi and zj so that

˜

z

T
i ˜zj = 0 and

B

˜

zi = �i˜zi �i = �j

B

˜

zj = �j˜zj.



• Assume eigenvalues are sorted with �

1

� �

2

� · · · � �n.

• For any x we have: x = c

1

z

1

+ c

2

z

2

+ · · · + cnzn.

• Let ||x || = 1.

• Want to find

max

||x ||=1

x

T
Bx

x

T
x

= max

||x ||=1

x

T
Bx.

• Note:

x

T
x =

 
nX

i=1

cizi

!T  nX

j=1

cjzj

!

=

nX

i=1

nX

j=1

ci cjz
T
i zj

=

nX

i=1

nX

j=1

ci cj�ij

=

nX

i=1

c

2

i = 1.

=) c

2

1

= 1�
nX

i=2

c

2

i .



x

T
Bx =

 
nX

i=1

cizi

!T  nX

j=1

cjBzj

!

=

 
nX

i=1

cizi

!T  nX

j=1

cj�jzj

!

=

nX

i=1

nX

j=1

ci �jcjz
T
i zj

=

nX

i=1

nX

j=1

ci �jcj�ij

=

nX

i=1

c

2

i�i = c

2

1

�

1

+ c

2

2

�

2

+ · · · + c

2

n�n

= �

1

⇥
c

2

1

+ c

2

2

�

2

+ · · · + c

2

n�n

⇤
, 0 < �i :=

�i

�

1

 1,

= �

1

⇥
(1� c

2

2

� · · ·� c

2

n) + c

2

2

�

2

+ · · · + c

2

n�n

⇤

= �

1

⇥
1 � (1� �

2

)c

2

2

+ (1� �

3

)c

2

3

+ · · · + (1� �n)c
2

n

⇤

= �

1

[1 � some positive (or zero) numbers] .

• Expression is maximized when c

2

= c

3

= · · · = cn = 0, =) c

1

= 1.

• Maximum value x

T
Bx = �

max

(B) = �

1

.

• Similarly, can show min x

T
Bx = �

min

(B) = �n.



• So, ||A||2 = max� �(A
T
A) = spectral radius of A

T
A.

• Now, ||A�1 ||2 = max

x 6=0

||A�1

x ||2

||x||2 .

• Let x = Ay:

||A�1 ||2 = max

y 6=0

||A�1

Ay ||2

||Ay||2 = max

y 6=0

||y ||2

||Ay||2 =

✓
min

y 6=0

||Ay ||2

||y||2

◆�1

=

1

�

min

(A

T
A)

.

• So, cond

2

(A) = ||A�1 || · ||A ||,

cond

2

(A) =

s
�

max

(A

T

A)

�

min

(A

T

A)

.
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Special Types of Linear Systems

Work and storage can often be saved in solving linear
system if matrix has special properties

Examples include

Symmetric : A = A

T , aij = aji for all i, j

Positive definite : xT
Ax > 0 for all x 6= 0

Band : aij = 0 for all |i� j| > �, where � is bandwidth of A

Sparse : most entries of A are zero
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Symmetric Positive Definite (SPD) Matrices 

❑  Very common in optimization and physical processes 

❑  Easiest example: 

❑  If  B is invertible, then   A := BTB  is SPD. 

❑  SPD systems of the form A x = b can be solved using 

❑  (stable) Cholesky factorization  A = LLT, or  

❑  iteratively with the most robust iterative solver, conjugate 
gradient iteration (generally with preconditioning, known as 
preconditioned conjugate gradients, PCG). 



Cholesky Factorization and SPD Matrices.

• A is SPD: A = AT
and x

TAx > 0 for all x 6= 0.

• Seek a symmetric factorization A =

˜L˜LT
(not LU).

– L not lower triangular but not unit lower triangular.

– That is, Ltii not necessarily 1.

• Alternatively, seek factorization A = LDLT
, where L is unit lower

triangular and D is diagonal.



• Start with LDLT
= A.

• Clearly, LU = A with U = DLT
.

– Follows from uniqueness of LU factorization.

– D is a row scaling of LT
and thus Dii = Uii.

– A property of SPD matrices is that all pivots are positive.

– (Another property is that you do not need to pivot.)

• Consider standard update step:

aij = aij � aik akj
akk

= aij � aik ajk
akk

• Usual multiplier column entries are lik = aik/akk.

• Usual pivot row entries are ukj = akj = ajk.

• So, if we factor 1/dkk = 1/akk out of U , we have:

dkk(akj/akk) = dkklkj
�! U = D(D�1U)

= DLT .

• For Cholesky, we have

A = LDLT
= L

p
D
p
DLT

=

˜L˜LT ,

with

˜L = L
p
D.
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Symmetric Positive Definite Matrices

If A is symmetric and positive definite, then LU
factorization can be arranged so that U = L

T , which gives
Cholesky factorization

A = LL

T

where L is lower triangular with positive diagonal entries
Algorithm for computing it can be derived by equating
corresponding entries of A and LL

T

In 2⇥ 2 case, for example,

a11 a21

a21 a22

�
=


l11 0

l21 l22

� 
l11 l21

0 l22

�

implies

l11 =
p
a11, l21 = a21/l11, l22 =

q
a22 � l

2
21
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Cholesky Factorization (Text) 

After a row scaling, this is just standard LU decomposition, 
exploiting symmetry in the LU factors and A. ( U=LT ) 
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Cholesky Factorization

One way to write resulting general algorithm, in which
Cholesky factor L overwrites original matrix A, is

for j = 1 to n

for k = 1 to j � 1

for i = j to n

aij = aij � aik · ajk
end

end

ajj =
p
ajj

for k = j + 1 to n

akj = akj/ajj

end

end
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Cholesky Factorization, continued

Features of Cholesky algorithm for symmetric positive
definite matrices

All n square roots are of positive numbers, so algorithm is
well defined
No pivoting is required to maintain numerical stability
Only lower triangle of A is accessed, and hence upper
triangular portion need not be stored
Only n

3
/6 multiplications and similar number of additions

are required
Thus, Cholesky factorization requires only about half work
and half storage compared with LU factorization of general
matrix by Gaussian elimination, and also avoids need for
pivoting

< interactive example >
Michael T. Heath Scientific Computing 79 / 88
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Linear Algebra Very Short Summary 

 Main points: 

❑  Conditioning of matrix  cond(A) bounds our expected accuracy. 
❑  e.g., if cond(A) ~ 105  we expect at most  11 significant digits in x.  
❑ Why? 
❑ We start with IEEE double precision – 16 digits.  We lose 5 because 

condition (A) ~ 105, so we have 11 = 16-5. 
 
❑  Stable algorithm (i.e., pivoting) important to realizing this bound. 

❑ Some systems don’t need pivoting (e.g., SPD, diagonally dominant) 
❑ Unstable algorithms can sometimes be rescued with iterative 

refinement. 

❑  Costs: 
❑  Full matrix à O(n2) storage,  O(n3) work (wall-clock time) 
❑ Sparse or banded matrix, substantially less. 



❑  The following slides present the book’s derivation of the LU 
factorization process. 

❑  I’ll highlight a few of them that show the equivalence between the 
outer product approach and the elementary elimination matrix 
approach. 
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Example: Triangular Linear System

2

4
2 4 �2

0 1 1

0 0 4

3

5

2

4
x1

x2

x3

3

5
=

2

4
2

4

8

3

5

Using back-substitution for this upper triangular system,
last equation, 4x3 = 8, is solved directly to obtain x3 = 2

Next, x3 is substituted into second equation to obtain
x2 = 2

Finally, both x3 and x2 are substituted into first equation to
obtain x1 = �1
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Elimination

To transform general linear system into triangular form, we
need to replace selected nonzero entries of matrix by
zeros

This can be accomplished by taking linear combinations of
rows

Consider 2-vector a =


a1

a2

�

If a1 6= 0, then


1 0

�a2/a1 1

� 
a1

a2

�
=


a1

0

�
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Elementary Elimination Matrices

More generally, we can annihilate all entries below kth
position in n-vector a by transformation

Mka =

2

666666664

1 · · · 0 0 · · · 0

... . . . ...
... . . . ...

0 · · · 1 0 · · · 0

0 · · · �mk+1 1 · · · 0

... . . . ...
... . . . ...

0 · · · �mn 0 · · · 1

3

777777775

2

666666664

a1
...
ak

ak+1
...
an

3

777777775

=

2

666666664

a1
...
ak

0

...
0

3

777777775

where mi = ai/ak, i = k + 1, . . . , n

Divisor ak, called pivot, must be nonzero
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Elementary Elimination Matrices, continued

Matrix Mk, called elementary elimination matrix, adds
multiple of row k to each subsequent row, with multipliers

mi chosen so that result is zero

Mk is unit lower triangular and nonsingular

Mk = I �mke
T
k , where mk = [0, . . . , 0,mk+1, . . . ,mn]

T

and ek is kth column of identity matrix

M

�1
k = I +mke

T
k , which means M

�1
k = Lk is same as

Mk except signs of multipliers are reversed
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Elementary Elimination Matrices, continued

If Mj , j > k, is another elementary elimination matrix, with
vector of multipliers mj , then

MkMj = I �mke
T
k �mje

T
j +mke

T
kmje

T
j

= I �mke
T
k �mje

T
j

which means product is essentially “union,” and similarly
for product of inverses, LkLj
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Comment on update step and mkeT
k 

❑  Recall, v = C w 2 span{C}. 
❑   )  V = ( v1 v2…vn) = C ( w1 w2…wn) 2 span{C}. 

 

❑  If C = c,  i.e., C is a column vector and therefore of rank 1, 
then V is in span{C} and is of rank 1. 

❑  All columns of V are multiples of c. 

❑  Thus,  W = c rT  is an n x n matrix of rank 1.   
❑  All columns are multiples of the first column and 

❑  All rows are multiples of the first row. 
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Elementary Elimination Matrices, continued

Matrix Mk, called elementary elimination matrix, adds
multiple of row k to each subsequent row, with multipliers

mi chosen so that result is zero

Mk is unit lower triangular and nonsingular

Mk = I �mke
T
k , where mk = [0, . . . , 0,mk+1, . . . ,mn]

T

and ek is kth column of identity matrix

M

�1
k = I +mke

T
k , which means M

�1
k = Lk is same as

Mk except signs of multipliers are reversed
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Example: Elementary Elimination Matrices

For a =

2

4
2

4

�2

3

5,

M1a =

2

4
1 0 0

�2 1 0

1 0 1

3

5

2

4
2

4

�2

3

5
=

2

4
2

0

0

3

5

and

M2a =

2

4
1 0 0

0 1 0

0 1/2 1

3

5

2

4
2

4

�2

3

5
=

2

4
2

4

0

3

5
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Example, continued

Note that

L1 = M

�1
1 =

2

4
1 0 0

2 1 0

�1 0 1

3

5
, L2 = M

�1
2 =

2

4
1 0 0

0 1 0

0 �1/2 1

3

5

and

M1M2 =

2

4
1 0 0

�2 1 0

1 1/2 1

3

5
, L1L2 =

2

4
1 0 0

2 1 0

�1 �1/2 1

3

5
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Gaussian Elimination

To reduce general linear system Ax = b to upper
triangular form, first choose M1, with a11 as pivot, to
annihilate first column of A below first row

System becomes M1Ax = M1b, but solution is unchanged

Next choose M2, using a22 as pivot, to annihilate second
column of M1A below second row

System becomes M2M1Ax = M2M1b, but solution is still
unchanged

Process continues for each successive column until all
subdiagonal entries have been zeroed
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Gaussian Elimination

To reduce general linear system Ax = b to upper
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annihilate first column of A below first row

System becomes M1Ax = M1b, but solution is unchanged

Next choose M2, using a22 as pivot, to annihilate second
column of M1A below second row

System becomes M2M1Ax = M2M1b, but solution is still
unchanged

Process continues for each successive column until all
subdiagonal entries have been zeroed
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Technically, this should be a’22 , the 2-2 entry in  A’ := M1A.  
Thus, we don’t know all the pivots in advance. 
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Gaussian Elimination, continued

Resulting upper triangular linear system

Mn�1 · · ·M1Ax = Mn�1 · · ·M1b

MAx = Mb

can be solved by back-substitution to obtain solution to
original linear system Ax = b

Process just described is called Gaussian elimination
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LU Factorization

Product LkLj is unit lower triangular if k < j, so

L = M

�1
= M

�1
1 · · ·M�1

n�1 = L1 · · ·Ln�1

is unit lower triangular

By design, U = MA is upper triangular

So we have
A = LU

with L unit lower triangular and U upper triangular

Thus, Gaussian elimination produces LU factorization of
matrix into triangular factors
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LU Factorization, continued

Having obtained LU factorization, Ax = b becomes
LUx = b, and can be solved by forward-substitution in
lower triangular system Ly = b, followed by
back-substitution in upper triangular system Ux = y

Note that y = Mb is same as transformed right-hand side
in Gaussian elimination

Gaussian elimination and LU factorization are two ways of
expressing same solution process
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Example: Gaussian Elimination

Use Gaussian elimination to solve linear system

Ax =

2

4
2 4 �2

4 9 �3

�2 �3 7

3

5

2

4
x1

x2

x3

3

5
=

2

4
2

8

10

3

5
= b

To annihilate subdiagonal entries of first column of A,

M1A =

2

4
1 0 0

�2 1 0

1 0 1

3

5

2

4
2 4 �2

4 9 �3

�2 �3 7

3

5
=

2

4
2 4 �2

0 1 1

0 1 5

3

5
,

M1b =

2

4
1 0 0

�2 1 0

1 0 1

3

5

2

4
2

8

10

3

5
=

2

4
2

4

12

3

5
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Example, continued

To annihilate subdiagonal entry of second column of M1A,

M2M1A =

2

4
1 0 0

0 1 0

0 �1 1

3

5

2

4
2 4 �2

0 1 1

0 1 5

3

5
=

2

4
2 4 �2

0 1 1

0 0 4

3

5
= U ,

M2M1b =

2

4
1 0 0

0 1 0

0 �1 1

3

5

2

4
2

4

12

3

5
=

2

4
2

4

8

3

5
= Mb
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Example, continued

We have reduced original system to equivalent upper
triangular system

Ux =

2

4
2 4 �2

0 1 1

0 0 4

3

5

2

4
x1

x2

x3

3

5
=

2

4
2

4

8

3

5
= Mb

which can now be solved by back-substitution to obtain

x =

2

4
�1

2

2

3

5
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Example, continued

To write out LU factorization explicitly,

L1L2 =

2

4
1 0 0

2 1 0

�1 0 1

3

5

2

4
1 0 0

0 1 0

0 1 1

3

5
=

2

4
1 0 0

2 1 0

�1 1 1

3

5
= L

so that

A =

2

4
2 4 �2

4 9 �3

�2 �3 7

3

5
=

2

4
1 0 0

2 1 0

�1 1 1

3

5

2

4
2 4 �2

0 1 1

0 0 4

3

5
= LU
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