Failure to pivot can result in all subsequent rows looking like multiples of the kth row:

- Consider

$$
A=\left(\begin{array}{cc}
\epsilon & -r_{1}^{T}- \\
a_{21} & -\underline{r}_{2}^{T}- \\
a_{31} & \underline{r}_{3}^{T}- \\
\vdots & -
\end{array}\right)
$$

Gaussian elimination leads to

$$
\underline{r}_{i} \longleftarrow \quad \underline{r}_{i}-\frac{a_{i 1}}{\epsilon} \underline{r}_{1} \approx-\frac{a_{i 1}}{\epsilon} \underline{r}_{1}
$$

- Matlab example "pivot.m"

End of Lecture 3
pivot_gui.m

$1.0 \mathrm{e}-18$	1.0000	2.0000	3.0000	4.0000
1.0000	4.0000	4.0000	6.0000	1.0000
2.0000	8.0000	7.0000	9.0000	2.0000
3.0000	6.0000	1.0000	3.0000	3.0000
4.0000	4.0000	2.0000	8.0000	4.0000

Failure to Pivot, Noncatastrophic Case

\square In cases where the nominal pivot is small but $>\epsilon_{M}$, we are effectively reducing the number of significant digits that represent the remainder of the matrix A.
\square In essence, we are driving the rows (or columns) to be similar, which is equivalent to saying that we have nearly parallel columns.
\square We will see next time a 2×2 example where the condition number of the matrix with 2 unit-norm vectors scales like $2 / \theta$, where θ is the (small) angle between the column vectors.

Partial Pivoting: Costs

Procedure:

- For each k, pick k^{\prime} such that $\left|a_{k^{\prime} k}\right| \geq\left|a_{i k}\right|, i \geq k$.
- Swap rows k and k^{\prime}.
- Proceed with central update step: $A^{(k+1)}=A^{(k)}-\mathbf{c}_{k} \mathbf{r}_{k}^{T}$

Costs:

- For each step, search is $O(n-k)$, total cost is $\approx n^{2} / 2$.
- For each step, row swap is $O(n-k)$, total cost is $\approx n^{2} / 2$.
- Total cost for partial pivoting is $O\left(n^{2}\right) \lambda 2 n^{3} / 3$.
- If we use full pivoting, total search cost such that $\left|a_{k^{\prime} k^{\prime \prime}}\right| \geq\left|a_{i j}\right|, i, j \geq k$, is $O\left(n^{3}\right)$.
- Row and column exchange costs still total only $O\left(n^{2}\right)$.

Notes:

- Partial (row) pivoting ensures that multiplier column entries have modulus ≤ 1. (Good.)
- Full pivoting also destroys band structure, whereas partial pivoting leaves some band structure intact.

Partial Pivoting: LU=PA

- Note: If we swap rows of A, we are swapping equations.
- We must swap rows of \mathbf{b}.
- $L U$ routines normally return the pivot index vector to effect this exchange.
- Nominally, it looks like a permutation matrix P, which is simply the identity matrix with rows interchanged.
- If we swap equations, we must also swap rows of L
- If we are consistent, we can swap rows at any time (i.e., A, or L) and get the same final factorization: $L U=P A$.
- Most codes swap $A^{(k+1)}$, but not the factors in L that have already been stored.
- Swapping rows of $A^{(k+1)}$ helps with speed (vectorization) of $A^{(k+1)}=A^{(k)}-\mathbf{c}_{k} \mathbf{r}_{k}^{T}$.
- In parallel computing, one would not swap the pivot row. Just pass the pointer to the processor holding the new pivot row, where the swap would take place locally.

Pivoting, continued

- Although pivoting is generally required for stability of Gaussian elimination, pivoting is not required for some important classes of matrices
- Diagonally dominant

$$
\sum_{i=1, i \neq j}^{n}\left|a_{i j}\right|<\left|a_{j j}\right|, \quad j=1, \ldots, n
$$

- Symmetric positive definite

$$
\boldsymbol{A}=\boldsymbol{A}^{T} \quad \text { and } \quad \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}>0 \text { for all } \boldsymbol{x} \neq \mathbf{0}
$$

Uniqueness of LU Factorization

- Despite variations in computing it, LU factorization is unique up to diagonal scaling of factors
- Provided row pivot sequence is same, if we have two LU factorizations $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}=\hat{\boldsymbol{L}} \hat{\boldsymbol{U}}$, then $\hat{\boldsymbol{L}}^{-1} \boldsymbol{L}=\hat{\boldsymbol{U}} \boldsymbol{U}^{-1}=\boldsymbol{D}$ is both lower and upper triangular, hence diagonal
- If both L and \hat{L} are unit lower triangular, then D must be identity matrix, so $L=\hat{L}$ and $\boldsymbol{U}=\hat{\boldsymbol{U}}$
- Uniqueness is made explicit in LDU factorization $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{U}$, with \boldsymbol{L} unit lower triangular, \boldsymbol{U} unit upper triangular, and \boldsymbol{D} diagonal

Storage Management

- Elementary elimination matrices M_{k}, their inverses L_{k}, and permutation matrices \boldsymbol{P}_{k} used in formal description of LU factorization process are not formed explicitly in actual implementation
- \boldsymbol{U} overwrites upper triangle of \boldsymbol{A}, multipliers in \boldsymbol{L} overwrite strict lower triangle of \boldsymbol{A}, and unit diagonal of \boldsymbol{L} need not be stored
- Row interchanges usually are not done explicitly; auxiliary integer vector keeps track of row order in original locations

Inversion vs. Factorization

- Even with many right-hand sides b, inversion never overcomes higher initial cost, since each matrix-vector multiplication $\boldsymbol{A}^{-1} \boldsymbol{b}$ requires n^{2} operations, similar to cost of forward- and back-substitution
- Inversion gives less accurate answer; for example, solving $3 x=18$ by division gives $x=18 / 3=6$, but inversion gives $x=3^{-1} \times 18=0.333 \times 18=5.99$ using 3 -digit arithmetic
- Matrix inverses often occur as convenient notation in formulas, but explicit inverse is rarely required to implement such formulas
- For example, product $\boldsymbol{A}^{-1} \boldsymbol{B}$ should be computed by LU factorization of \boldsymbol{A}, followed by forward- and back-substitutions using each column of \boldsymbol{B}

Band Matrices

- Gaussian elimination for band matrices differs little from general case - only ranges of loops change
- Typically matrix is stored in array by diagonals to avoid storing zero entries
- If pivoting is required for numerical stability, bandwidth can grow (but no more than double)
- General purpose solver for arbitrary bandwidth is similar to code for Gaussian elimination for general matrices
- For fixed small bandwidth, band solver can be extremely simple, especially if pivoting is not required for stability

Tridiagonal Matrices

- Consider tridiagonal matrix

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
b_{1} & c_{1} & 0 & \cdots & 0 \\
a_{2} & b_{2} & c_{2} & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & a_{n-1} & b_{n-1} & c_{n-1} \\
0 & \cdots & 0 & a_{n} & b_{n}
\end{array}\right]
$$

- Gaussian elimination without pivoting reduces to

$$
\begin{aligned}
& d_{1}=b_{1} \\
& \text { for } i=2 \text { to } n \\
& \quad m_{i}=a_{i} / d_{i-1} \\
& \quad d_{i}=b_{i}-m_{i} c_{i-1}
\end{aligned} \quad \text { Cost is } O(n)!
$$

end

Tridiagonal Matrices, continued

- LU factorization of \boldsymbol{A} is then given by

$$
\boldsymbol{L}=\left[\begin{array}{ccccc}
1 & 0 & \cdots & \cdots & 0 \\
m_{2} & 1 & \ddots & & \vdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & m_{n-1} & 1 & 0 \\
0 & \cdots & 0 & m_{n} & 1
\end{array}\right], \quad \boldsymbol{U}=\left[\begin{array}{ccccc}
d_{1} & c_{1} & 0 & \cdots & 0 \\
0 & d_{2} & c_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & d_{n-1} & c_{n-1} \\
0 & \cdots & \cdots & 0 & d_{n}
\end{array}\right]
$$

Example of Banded Systems

- Graphs (i.e., matrices) arising from differential equations in 1D, 2D, 3D (and higher...) are generally banded and sparse.
- Example:

$$
-\frac{d^{2} u}{d x^{2}}=f(x) \longrightarrow-\frac{u_{i-1}-2 u_{i}+u_{i+1}}{h^{2}} \approx f_{i}
$$

In Matrix Form

$$
\begin{aligned}
& -\frac{d^{2} u}{d x^{2}}=f(x) \longrightarrow-\frac{u_{i-1}-2 u_{i}+u_{i+1}}{h^{2}} \approx f_{i} \\
& A_{1 D}=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & \ddots & \ddots & \\
& & \ddots & \ddots & -1 \\
& & & -1 & 2
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
\vdots \\
u_{m}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
\vdots \\
f_{m}
\end{array}\right)
\end{aligned}
$$

- Banded, tridiagonal matrix ("1D Poisson Operator")

Some Hints For HW1

- Consider the tridiagonal matrix system, $A \underline{x}=\underline{f}$,

$$
\underbrace{\left(\begin{array}{ccccc}
b_{1} & c_{1} & & & \\
a_{2} & b_{2} & c_{2} & & \\
& a_{3} & \ddots & \ddots & \\
& & \ddots & \ddots & c_{n-1} \\
& & & a_{n} & b_{n}
\end{array}\right)}_{A} \underbrace{\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right)}_{\underline{x}}=\underbrace{\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
\vdots \\
f_{n}
\end{array}\right)}_{\underline{f}} .
$$

- When solving this system, one only needs to store five vectors of length $O(n)$, namely, $\underline{a}, \underline{b}, \underline{c}, \underline{x}$, and \underline{f}. (Often, the solution is overwritten onto \underline{f}, so you don't actually need \underline{x}.) The code provided implements a tridiagonal system solve for this class of problems.
- Gaussian elimination for this system leads to the following pseudocode for the forward solve:

$$
\begin{array}{rlrl}
\text { for } \mathrm{i} & =2: \mathrm{n} & \\
a_{i} & =a_{i} / b_{i-1} & & \text { \% Store row multiplier. } \\
b_{i} & =b_{i}-a_{i} * c_{i-1} & & \text { \% Update row } i \text { of } A . \\
f_{i} & =f_{i}-a_{i} * f_{i-1} & & \text { \% Update row } i \text { of } \underline{f} . \\
\text { end } & &
\end{array}
$$

- The preceding loop factors the matrix A into the product $L U=A$, where L is unit-lower triangular and U is upper triangular. It also maps the original right-hand side to $\underline{f} \longleftarrow L^{-1} \underline{f}$.
- The remaining step is to compute $\underline{x} \longleftarrow U^{-1} \underline{f}$:

$$
\underbrace{\left(\begin{array}{ccccc}
b_{1} & c_{1} & & & \\
& b_{2} & c_{2} & & \\
& & \ddots & \ddots & \\
& & & \ddots & c_{n-1} \\
& & & & b_{n}
\end{array}\right)}_{U} \underbrace{\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right)}_{\underline{x}}=\underbrace{\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
\vdots \\
f_{n}
\end{array}\right)}_{\underline{f}} .
$$

- Pseudocode for this system is

$$
\begin{aligned}
& x_{n}=f_{n} / b_{n} \\
& \text { for } \mathrm{i}=(\mathrm{n}-1): 1 \\
& x_{i}=\frac{1}{b_{i}}\left(f_{i}-c_{i} * x_{i+1}\right) \\
& \text { end }
\end{aligned}
$$

- For the HW, you are asked to solve a periodic matrix, which can be cast in the following form

$$
\underbrace{\left(\begin{array}{cccccc}
b_{1} & c_{1} & & & & d_{1} \\
a_{2} & b_{2} & c_{2} & & & d_{2} \\
& a_{3} & \ddots & \ddots & & \vdots \\
& & \ddots & \ddots & c_{n-2} & d_{n-2} \\
e_{1} & e_{2} & \cdots & e_{n-2} & e_{n-1} & d_{n}
\end{array}\right)}_{A} \underbrace{\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right)}_{\underline{x}}=\underbrace{\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
\vdots \\
f_{n}
\end{array}\right)}_{\underline{f}}
$$

- Factorization of the principal (leading) $(n-1) \times(n-1)$ tridiagonal submatrix will proceed as before.
- In addition, you'll need to update the last row $\left(\underline{e}^{T}\right)$ and column (\underline{d}).
- When you get to the final 2×2 block you have interactions between the $\underline{b}, \underline{e}$, and \underline{d} vectors that should be treated outside of the for loop.
- Proceed with standard Gaussian elimination for this phase and then with backward substitution for the remaining upper triangular system.

General Band Matrices

- In general, band system of bandwidth β requires $\mathcal{O}(\beta n)$ storage, and its factorization requires $\mathcal{O}\left(\beta^{2} n\right)$ work
- Compared with full system, savings is substantial if $\beta \ll n$

Banded Systems

- Significant savings in storage and work if A is banded $\rightarrow \mathrm{a}_{\mathrm{ij}}=0$ if $|\mathrm{i}-\mathrm{j}|>\beta$
- The LU factors preserve the nonzero structure of A (unless there is pivoting, in which case, the bandwidth of L can grow by at most $2 x$).
- Storage / solve costs for $\mathbf{L U}$ is $\sim 2 n \beta$
- Factor cost is $\sim \mathrm{n} \beta^{2} \ll \mathrm{n}^{3}$

Definitely Do Not Invert A or L or U for Banded Systems

Solver Times, Banded, Cholesky (SPD), Full

Solver Times, Banded, Cholesky (SPD), Full

```
% Demo of banded-matrix costs
clear all;
for pass=1:2;
beta=10;
for k=4:13; n = 2^k;
    R=9*eye(n) + rand(n,n); S=R'*R; A=spalloc(n,n,1+2*beta);
    for i=1:n; j0=max(1,i-beta);jl=min(n,i+beta);
        A(i,j0:j1)=R(i,j0:j1);
    end;
    tstart=tic; [L,U]=lu(A); tsparse(k) = toc(tstart);
    tstart=tic; [L,U]=lu(R); tfull(k) = toc(tstart);
    tstart=tic; [C]=chol(S); tchol(k) = toc(tstart);
    nk(k)=n;
    sk(k)=(2*(n^3)/3)/(1.e9*tfull(k)); % GFLOPS
    ck(k)=(2*(n^3)/3)/(1.e9*tchol(k)); % GFLOPS
    [n tsparse(k) tfull(k) tchol(k)]
end;
loglog(nk,tsparse,'r.-',nk,tfull,'b.-',nk,tchol,'k.-')
axis square; title('LU time for full, banded, and SPD matrices')
```


Cost of Banded Factorization

- Active submatrix for matrix with bandwidth b is $(b \times b)$.
\square Work for outer product is $\mathbf{c r}^{\mathbf{T}}$, which is outer product of two vectors of length b.
- So, total work is $\sim n \times\left(b^{2}\right)$ x 2 operations to convert A into LU.
\square If we have pivoting, then bandwidth of U can grow by $2 x$.

Cost of Banded Factorization

- Pivoting can pull a row that has $2 b$ nonzeros to right of diagonal.
- U can end up with bandwidth 2 b .

Cost of Banded Factorization

- Pivoting can pull a row that has $2 b$ nonzeros to right of diagonal.
- U can end up with bandwidth 2 b .

Cost of Banded Factorization

- Pivoting can pull a row that has $2 b$ nonzeros to right of diagonal.
- U can end up with bandwidth 2 b .

pivot_gui_band demo

0.3808	0.3687	0.9319	0.7159	0	0	0	0	0	0
0	0.6074	0.8979	0.8132	0.8964	0.8443	0	0	0	0
0.0341	0.4704	-0.1058	0.5477	0.2857	-0.3972	0	0	0	0
0.4967	0.2730	-0.0850	-0. 5775	-0.2447	-0.2305	0	0	0	0
0	0	0.3564	0.1630	0.1818	0.5544	0.1102	0	0	0
0	0	0	0.0605	0.1366	0.7068	0.0704	0.0576	0	0
0	0	0	0	0.4603	0.5187	0.1690	0.4586	0.1100	0
0	0	0	0	0	0.9951	0.8019	0.8349	0.8467	0.1633
0	0	0	0	0	0	0.4288	0.7628	0.8159	0.2321
0	0	0	0	0	0	0	0.2054	0.3190	0.9207
				Partial piv	*				

LINPACK and LAPACK

- LINPACK is software package for solving wide variety of systems of linear equations, both general dense systems and special systems, such as symmetric or banded
- Solving linear systems of such fundamental importance in scientific computing that LINPACK has become standard benchmark for comparing performance of computers
- LAPACK is more recent replacement for LINPACK featuring higher performance on modern computer architectures, including some parallel computers

Basic Linear Algebra Subprograms

- High-level routines in LINPACK and LAPACK are based on lower-level Basic Linear Algebra Subprograms (BLAS)
- BLAS encapsulate basic operations on vectors and matrices so they can be optimized for given computer architecture while high-level routines that call them remain portable
- Higher-level BLAS encapsulate matrix-vector and matrix-matrix operations for better utilization of memory hierarchies such as cache and virtual memory with paging
- Generic Fortran versions of BLAS are available from Net li.b, and many computer vendors provide custom versions optimized for their particular systems

Examples of BLAS

Level	Work	Examples	Function
1	$\mathcal{O}(n)$	saxpy	Scalar \times vector + vector
		sdot	Inner product
		snrm2	Euclidean vector norm
2	$\mathcal{O}\left(n^{2}\right)$	sgemv	Matrix-vector product
		strsv	Triangular solution
		sger	Rank-one update
3	$\mathcal{O}\left(n^{3}\right)$	sgemm	Matrix-matrix product
		strsm	Multiple triang. solutions
		ssyrk	Rank- k update

- Level-3 BLAS have more opportunity for data reuse, and hence higher performance, because they perform more operations per data item than lower-level BLAS

Vector Norms

- Magnitude, modulus, or absolute value for scalars generalizes to norm for vectors
- We will use only p-norms, defined by

$$
\|\boldsymbol{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

for integer $p>0$ and n-vector \boldsymbol{x}

- Important special cases
- 1-norm: $\|\boldsymbol{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- 2-norm: $\|\boldsymbol{x}\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}$
- ∞-norm: $\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$

Next Topics

\square Conditioning (This material is in the first part of Chapter 2.)

- Measuring errors
- Defining measures (norms)
- Condition number (Be aware of why condition number is important.)
\square Special matrices:
- Rank-1 updates: Sherman Morrison
- Tensor-product matrices (online notes)

Vector Norms

- Magnitude, modulus, or absolute value for scalars generalizes to norm for vectors
- We will use only p-norms, defined by

$$
\|\boldsymbol{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

for integer $p>0$ and n-vector \boldsymbol{x}

- Important special cases
- 1-norm: $\|\boldsymbol{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- 2-norm: $\|\boldsymbol{x}\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}$
- ∞-norm: $\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$

Example: Vector Norms

- Drawing shows unit sphere in two dimensions for each norm

- Norms have following values for vector shown

$$
\|\boldsymbol{x}\|_{1}=2.8 \quad\|\boldsymbol{x}\|_{2}=2.0 \quad\|\boldsymbol{x}\|_{\infty}=1.6
$$

Equivalence of Norms

- In general, for any vector \boldsymbol{x} in $\mathbb{R}^{n},\|\boldsymbol{x}\|_{1} \geq\|\boldsymbol{x}\|_{2} \geq\|\boldsymbol{x}\|_{\infty}$
- However, we also have

$$
\|\boldsymbol{x}\|_{1} \leq \sqrt{n}\|\boldsymbol{x}\|_{2}, \quad\|\boldsymbol{x}\|_{2} \leq \sqrt{n}\|\boldsymbol{x}\|_{\infty}, \quad\|\boldsymbol{x}\|_{1} \leq n\|\boldsymbol{x}\|_{\infty}
$$

- Thus, for given n, norms differ by at most a constant, and hence are equivalent: if one is small, they must all be proportionally small.
- Important Point: Equivalence of Norms (for n fixed):

For all vector norms $\|\underline{x}\|_{m}$ and $\|\underline{x}\|_{M} \exists$ constants c and C such that

$$
\mathrm{c}\|\underline{\mathrm{x}}\|_{m} \leq\|\underline{\mathrm{x}}\|_{\mathrm{M}} \leq \mathrm{C}\|\underline{x}\|_{\mathrm{m}}
$$

Allows us to work with the norm that is most convenient.

Properties of Vector Norms

- For any vector norm
- $\|\boldsymbol{x}\|>0$ if $\boldsymbol{x} \neq \mathbf{0}$
- $\|\gamma \boldsymbol{x}\|=|\gamma| \cdot\|\boldsymbol{x}\|$ for any scalar γ
- $\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\| \quad$ (triangle inequality)
- In more general treatment, these properties taken as definition of vector norm
- Useful variation on triangle inequality
- | $\|\boldsymbol{x}\|-\|\boldsymbol{y}\| \mid \leq\|\boldsymbol{x}-\boldsymbol{y}\|$

Matrix Norms

- Matrix norm corresponding to given vector norm is defined by

$$
\|\boldsymbol{A}\|=\max _{\boldsymbol{x} \neq \mathbf{0}} \frac{\|\boldsymbol{A} \boldsymbol{x}\|}{\|\boldsymbol{x}\|}
$$

- Norm of matrix measures maximum stretching matrix does to any vector in given vector norm

Matrix Norms

For any vector norm $\|\underline{x}\|_{*}$, define

$$
\|A\|_{*}=\max _{\underline{x} \neq 0} \frac{\|A \underline{x}\|_{*}}{\|\underline{x}\|_{*}}=\max _{\|\underline{x}\|_{*}=1}\|A \underline{x}\|_{*}
$$

- Often called the induced or subordinate matrix norm associated with the vector norm $\|\underline{x}\|_{*}$

Q: Can a matrix norm be less than 1 ?

Matrix Norms

- Matrix norm corresponding to vector 1-norm is maximum absolute column sum

$$
\|\boldsymbol{A}\|_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

- Matrix norm corresponding to vector ∞-norm is maximum absolute row sum

$$
\|\boldsymbol{A}\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

- Handy way to remember these is that matrix norms agree with corresponding vector norms for $n \times 1$ matrix

Matrix Norm Example

QQuestions:
\square What is the 1 -norm of the matrix below ?
\square What is the ∞-norm?

$$
B=\left[\begin{array}{rrr}
1 & 4 & -2 \\
4 & 2 & -5 \\
0 & -5 & 3
\end{array}\right]
$$

Matrix Norms: 2-norm

\square The 2-norm of a symmetric matrix is $\max _{i}\left|\lambda_{i}\right|$
\square Here, λ_{i} is the ith eigenvalue of A
\square We say A is symmetric if $a_{i j}=a_{j i}$ for $i, j \in\{1,2, \ldots, n\}^{2}$
\square That is, $A=A^{\top}$ (A is equal to its transpose)

Properties of Matrix Norms

- Any matrix norm satisfies
- $\|\boldsymbol{A}\|>0$ if $\boldsymbol{A} \neq \mathbf{0}$
- $\|\gamma \boldsymbol{A}\|=|\gamma| \cdot\|\boldsymbol{A}\|$ for any scalar γ
- $\|\boldsymbol{A}+\boldsymbol{B}\| \leq\|\boldsymbol{A}\|+\|\boldsymbol{B}\|$
- Matrix norms we have defined also satisfy
- $\|\boldsymbol{A B}\| \leq\|A\| \cdot\|B\|$
- $\|\boldsymbol{A} \boldsymbol{x}\| \leq\|\boldsymbol{A}\| \cdot\|\boldsymbol{x}\|$ for any vector \boldsymbol{x}

Matrix Norm Example

- Matrix norms are particularly useful in analyzing iterative solvers.
- Consider the system $A \mathbf{x}=\mathbf{b}$ to be solved with the following iterative scheme.
- Start with initial guess $\mathbf{x}_{0}=0$ and, for $k=0,1, \ldots$,

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}+M\left(\mathbf{b}-A \mathbf{x}_{k}\right) . \tag{1}
\end{equation*}
$$

- Let $G:=I-M A$. We can use the matrix norm of G to bound the error in the above iteration and determine its rate of convergence.
- Begin by defining the error to be $\mathbf{e}_{k}:=\mathbf{x}-\mathbf{x}_{k}$.
- Note that $\mathbf{b}-A \mathbf{x}_{k}=A \mathbf{x}-A \mathbf{x}_{k}=A\left(\mathbf{x}-\mathbf{x}_{k}\right)=A \mathbf{e}_{k}$.
- Using the preceding result and subtracting (1) from the equation $\mathbf{x}=\mathbf{x}$ yields the error equation

$$
\mathbf{e}_{k+1}=\mathbf{e}_{k}-M A \mathbf{e}_{k}=[I-M A] \mathbf{e}_{k}=G \mathbf{e}_{k} .
$$

Matrix Norm Example

- Error equation

$$
\mathbf{e}_{k+1}=\mathbf{e}_{k}-M A \mathbf{e}_{k}=[I-M A] \mathbf{e}_{k}=G \mathbf{e}_{k}
$$

- From the definition of the matrix norm, we have

$$
\left\|\mathbf{e}_{k}\right\| \leq\|G\|\left\|\mathbf{e}_{k-1}\right\| \leq\|G\|^{2}\left\|\mathbf{e}_{k-2}\right\| \ldots \leq\|G\|^{k}\left\|\mathbf{e}_{0}\right\|
$$

- With $\mathbf{x}_{0}=0$, we have $\mathbf{e}_{0}=\mathbf{x}$ and thus the relative error

$$
\frac{\left\|\mathbf{e}_{k}\right\|}{\|\mathbf{x}\|} \leq\|G\|^{k}
$$

- If $\|G\|<1$, the scheme (1) is convergent.
- By the equivalence of norms, if $\|G\|<1$ for any matrix norm, it is convergent.
- Q: Suppose $\|G\| \leq 0.25$. What is the bound on the number of iterations required to converge to machine precision in IEEE 64-bit arithmetic? (Hint: Think carefully. What is the best base to use in considering this question?)

Matrix Norm Example

- Consider the following example:

$$
\begin{aligned}
A & =n I+0.1 R, \quad R=\operatorname{rand}(n, n) r_{i j} \in[0,1] \\
M & =\operatorname{diag}\left(1 / a_{i i}\right)
\end{aligned}
$$

- In this case,

$$
\begin{aligned}
g_{i i} & =0 \\
g_{i j} & =0.1 \frac{-r_{i j}}{n+0.1 r_{i i}}
\end{aligned}
$$

- The ∞-norm for G is given by

$$
\|G\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|g_{i j}\right| \leq \max _{i} \sum_{i \neq j} M^{*}=(n-1) M^{*}
$$

where

$$
M^{*}:=\max _{i \neq j}\left|g_{i j}\right|<\frac{0.1}{n} .
$$

- In this case, we have a relative error bounded by $\|G\|_{\infty}^{k} \leq(0.1)^{k}$.
- Q: Estimate the number of iterations required to reduce the error to machine epsilon when using IEEE 64-bit floating point arithmetic.

Matrix Norm Example

- Recall, the algorithm is computable:

$$
\mathbf{x}_{k}=\mathbf{x}_{k-1}+M\left(\mathbf{b}-A \mathbf{x}_{k-1}\right) .
$$

- The error, not computable, obeys:

$$
\begin{aligned}
\left\|\mathbf{e}_{k}\right\| & \leq\|G\|^{k}\left\|\mathbf{e}_{0}\right\| \leq\|G\|^{k}\|\mathbf{x}\| \quad\left(\text { if } \mathbf{x}_{0}=0\right) \\
G & :=I-M^{-1} A
\end{aligned}
$$

- Which is why we are interested in the norm of G.
- These types of iterative solvers (and better versions) are of particular interest when
- A is sparse and has large bandwidth or
- Formation of A is much more expensive than evaluation of matrix-vector products of the form $\mathbf{w}=A \mathbf{x}_{k-1}$.
- Of course, we don't need to save the \mathbf{x}_{k}. We simply overwrite \mathbf{x} until we converge.

Condition Number

- Condition number of square nonsingular matrix \boldsymbol{A} is defined by

$$
\operatorname{cond}(\boldsymbol{A})=\|\boldsymbol{A}\| \cdot\left\|\boldsymbol{A}^{-1}\right\|
$$

- By convention, $\operatorname{cond}(\boldsymbol{A})=\infty$ if \boldsymbol{A} is singular
- Since

$$
\|\boldsymbol{A}\| \cdot\left\|\boldsymbol{A}^{-1}\right\|=\left(\max _{\boldsymbol{x} \neq \mathbf{0}} \frac{\|\boldsymbol{A} \boldsymbol{x}\|}{\|\boldsymbol{x}\|}\right) \cdot\left(\min _{\boldsymbol{x} \neq \mathbf{0}} \frac{\|\boldsymbol{A} \boldsymbol{x}\|}{\|\boldsymbol{x}\|}\right)^{-1}
$$

condition number measures ratio of maximum stretching to maximum shrinking matrix does to any nonzero vectors

- Large cond (\boldsymbol{A}) means \boldsymbol{A} is nearly singular

Condition Number Examples

$\boldsymbol{A}_{1}=\left[\begin{array}{cc}0.87 & 0.5 \\ -0.5 & 0.87\end{array}\right], \quad \operatorname{cond}_{2}\left(\boldsymbol{A}_{1}\right)=1$

$\boldsymbol{A}_{3}=\left[\begin{array}{cc}1.73 & 0.25 \\ -1 & 0.43\end{array}\right], \quad \operatorname{cond}_{2}\left(\boldsymbol{A}_{3}\right)=4$

$$
\boldsymbol{A}_{2}=\left[\begin{array}{cc}
2 & 0 \\
0 & 0.5
\end{array}\right], \quad \operatorname{cond}_{2}\left(\boldsymbol{A}_{2}\right)=4
$$

Properties of Condition Number

- For any matrix $\boldsymbol{A}, \operatorname{cond}(\boldsymbol{A}) \geq 1$
- For identity matrix, $\operatorname{cond}(\boldsymbol{I})=1$
- For any matrix \boldsymbol{A} and scalar $\gamma, \operatorname{cond}(\gamma \boldsymbol{A})=\operatorname{cond}(\boldsymbol{A})$
- For any diagonal matrix $\boldsymbol{D}=\operatorname{diag}\left(d_{i}\right), \operatorname{cond}(\boldsymbol{D})=\frac{\max \left|d_{i}\right|}{\min \left|d_{i}\right|}$

Computing Condition Number

- Definition of condition number involves matrix inverse, so it is nontrivial to compute
- Computing condition number from definition would require much more work than computing solution whose accuracy is to be assessed
- In practice, condition number is estimated inexpensively as byproduct of solution process
- Matrix norm $\|\boldsymbol{A}\|$ is easily computed as maximum absolute column sum (or row sum, depending on norm used)
- Estimating $\left\|A^{-1}\right\|$ at low cost is more challenging

Computing Condition Number, continued

- From properties of norms, if $\boldsymbol{A} \boldsymbol{z}=\boldsymbol{y}$, then

$$
\frac{\|\boldsymbol{z}\|}{\|\boldsymbol{y}\|} \leq\left\|\boldsymbol{A}^{-1}\right\|
$$

and bound is achieved for optimally chosen \boldsymbol{y}

- Efficient condition estimators heuristically pick \boldsymbol{y} with large ratio $\|\boldsymbol{z}\| /\|\boldsymbol{y}\|$, yielding good estimate for $\left\|\boldsymbol{A}^{-1}\right\|$
- Good software packages for linear systems provide efficient and reliable condition estimator

Error Bounds

- Condition number yields error bound for computed solution to linear system
- Let \boldsymbol{x} be solution to $\boldsymbol{A x}=\boldsymbol{b}$, and let $\hat{\boldsymbol{x}}$ be solution to $\boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{b}+\Delta \boldsymbol{b}$
- If $\Delta \boldsymbol{x}=\hat{\boldsymbol{x}}-\boldsymbol{x}$, then

$$
b+\Delta b=A(\hat{x})=A(x+\Delta x)=A x+A \Delta x
$$

which leads to bound

$$
\frac{\|\Delta \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\Delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|}
$$

for possible relative change in solution x due to relative change in right-hand side b

Condition Number and Relative Error: $A \mathrm{x}=\mathrm{b}$.

- Want to solve $A \mathbf{x}=\mathbf{b}$, but computed rhs is:

$$
\mathbf{b}^{\prime}=\mathbf{b}+\Delta \mathbf{b},
$$

where we anticpate

$$
\frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} \approx \leq \epsilon_{M}
$$

- Net result is we end up solving $A \mathbf{x}^{\prime}=\mathbf{b}^{\prime}$ and want to know how large is the relative error, $\mathrm{x}^{\prime}=\mathrm{x}+\Delta \mathrm{x}$,

$$
\frac{\|\Delta \mathrm{x}\|}{\|\mathrm{x}\|} ?
$$

- Since $A \mathbf{x}^{\prime}=\mathbf{b}^{\prime}$ and (by definition) $A \mathbf{x}=\mathbf{b}$, we have:

$$
\begin{aligned}
\|\Delta \mathbf{x}\| & \leq\left\|A^{-1}\right\|\|\Delta \mathbf{b}\| \\
\|\mathbf{b}\| & \leq\|A\|\|\mathbf{x}\| \\
\frac{1}{\|\mathbf{x}\|} & \leq\|A\| \frac{1}{\|\mathbf{b}\|} \\
\frac{\Delta \mathbf{x}}{\|\mathbf{x}\|} & \leq\|A\| \frac{\Delta \mathbf{x}}{\|\mathbf{b}\|} \\
& \leq\|A\|\left\|A^{-1}\right\| \frac{\Delta \mathbf{b}}{\|\mathbf{b}\|} \\
& =\operatorname{cond}(A) \frac{\Delta \mathbf{b}}{\|\mathbf{b}\|} .
\end{aligned}
$$

- Key point: If $\operatorname{cond}(A)=10^{k}$, then expected relative error is $\approx 10^{k} \epsilon_{M}$, meaning that you will lose k digits (of 16 , if $\epsilon_{M} \approx 10^{-16}$.

Illustration of Impact of cond(A)

```
%% Check the error in solving Au=f vs eps*cond(A).
%% Test problem is finite difference solution to -u" = f
%% on [0,1] with u(0)=u(1)=0.
for k=2:20; n = (2^k)-1; h=1/(n+1);
    e = ones(n,1);
    A = spdiags([-e 2*e -e],-1:1, n,n)/(h*h);
    x=1:n; x=h*x';
    ue=1+sin(pi*(8*x.*x));
    f=A*ue;
    u=A\f;
    hk(k)=h; ck(k)=cond(A);
    ek(k)=max(abs(u-ue))/max(ue);
end;
loglog(hk,ek,'r-',hk,eps*ck,'b-');
axis square
Here, we see that \(\epsilon_{M}{ }^{*} \operatorname{cond}(A)\) bounds the error in the solution to \(A u=f\), as expected.
```


Error Bounds, continued

- Similar result holds for relative change in matrix: if $(\boldsymbol{A}+\boldsymbol{E}) \hat{\boldsymbol{x}}=\boldsymbol{b}$, then

$$
\frac{\|\Delta \boldsymbol{x}\|}{\|\hat{\boldsymbol{x}}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|}
$$

- If input data are accurate to machine precision, then bound for relative error in solution x becomes

$$
\frac{\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A}) \epsilon_{\mathrm{mach}}
$$

- Computed solution loses about $\log _{10}(\operatorname{cond}(\boldsymbol{A}))$ decimal digits of accuracy relative to accuracy of input

Example

Error Bounds - Illustration

- In two dimensions, uncertainty in intersection point of two lines depends on whether lines are nearly parallel

well-conditioned

ill-conditioned

A Nearly Singular Example

$$
\begin{gathered}
A=\left[\begin{array}{ll}
\mathbf{a}_{1} & \mathbf{a}_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & c \\
0 & s
\end{array}\right] \\
c=\cos \theta, \quad s=\sin \theta
\end{gathered}
$$

- Clearly, as $\theta \longrightarrow 0$ the matrix becomes singular.
- Can show that

$$
\begin{aligned}
\text { cond } & =\sqrt{\frac{1+|c|}{1-|c|}} \\
& \approx \frac{2}{\theta}
\end{aligned}
$$

for small θ (by Taylor series!) matlab demo.

Matlab Demo cr2.m

This example plots cond (A) as a function of θ, as well as the estimates from the preceding slide.

- The computed value of cond (A) given by matlab exactly matches $[(1+|\cos \theta|) /(1-|\cos \theta|)]^{1 / 2}$
[The more interesting result is $\operatorname{cond}(A) \sim 2 / \theta$, which is very accurate for small angles.

```
%% Note - eigenvalues of A'*A are evals of C=A'*A =
%%%
% (1-lam)*(1-lam) - c^2 , which is z^2 - c^2 with roots
z=c and z=-c
    1-lam = c --> lam = 1 - c
    1-lam = -c --> lam = 1+c
    K2 = 1+c / 1 - c
        ~ 2 / (1/2 theta^2) for small theta ~ 4 / theta^2
    Therefore: K(A) = sqrt(K2) ~ 2/theta
```

format compact

```
jj=0; for j=.01:.01:(2*pi); cj=cos(j);sj=sin(j); jj=jj+1;
    R=[ cj -sj ; sj cj ];
    a1 = [ 1 ; 0 ]; a2 = R*a1; A = [ a1 a2 ];
    C(jj) = cond(A);
    t(jj)=j; aj = abs(cj); z(jj)=sqrt( (1+aj)/(1-aj) );
end;
plot(t,c,'r-',t,z,'k-.',t,2./abs(t),'g-','LineWidth', 3);
axis([0 2*pi 0 40]);text(pi,2,'2ハ0','FontSize',18) axis square;
xlabel('0','FontSize',18);ylabel('Cond(A)','FontSize',20)
title('Cond. Number: Nearly Parallel Unit Columns','FontSize',18)
```


Error Bounds - Caveats

- Normwise analysis bounds relative error in largest components of solution; relative error in smaller components can be much larger
- Componentwise error bounds can be obtained, but somewhat more complicated
- Conditioning of system is affected by relative scaling of rows or columns
- III-conditioning can result from poor scaling as well as near singularity
- Rescaling can help the former, but not the latter

Residual

- Residual vector of approximate solution \hat{x} to linear system $\boldsymbol{A x}=\boldsymbol{b}$ is defined by

$$
\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A} \hat{\boldsymbol{x}}
$$

- In theory, if \boldsymbol{A} is nonsingular, then $\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|=0$ if, and only if, $\|\boldsymbol{r}\|=0$, but they are not necessarily small simultaneously
- Since

$$
\frac{\|\Delta \boldsymbol{x}\|}{\|\hat{\boldsymbol{x}}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\| \cdot\|\hat{\boldsymbol{x}}\|}
$$

small relative residual implies small relative error in approximate solution only if \boldsymbol{A} is well-conditioned

Residual, continued

- If computed solution $\hat{\boldsymbol{x}}$ exactly satisfies

$$
(\boldsymbol{A}+\boldsymbol{E}) \hat{\boldsymbol{x}}=\boldsymbol{b}
$$

then

$$
\frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\|\|\hat{\boldsymbol{x}}\|} \leq \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|}
$$

so large relative residual implies large backward error in matrix, and algorithm used to compute solution is unstable

- Stable algorithm yields small relative residual regardless of conditioning of nonsingular system
- Small residual is easy to obtain, but does not necessarily imply computed solution is accurate

Scaling Linear Systems

- In principle, solution to linear system is unaffected by diagonal scaling of matrix and right-hand-side vector
- In practice, scaling affects both conditioning of matrix and selection of pivots in Gaussian elimination, which in turn affect numerical accuracy in finite-precision arithmetic
- It is usually best if all entries (or uncertainties in entries) of matrix have about same size
- Sometimes it may be obvious how to accomplish this by choice of measurement units for variables, but there is no foolproof method for doing so in general
- Scaling can introduce rounding errors if not done carefully

Example: Scaling

- Linear system

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & \epsilon
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
\epsilon
\end{array}\right]
$$

has condition number $1 / \epsilon$, so is ill-conditioned if ϵ is small

- If second row is multiplied by $1 / \epsilon$, then system becomes perfectly well-conditioned
- Apparent ill-conditioning was due purely to poor scaling
- In general, it is usually much less obvious how to correct poor scaling
- Sherman Morrison Formula

Solving Modified Problems

- If right-hand side of linear system changes but matrix does not, then LU factorization need not be repeated to solve new system
- Only forward- and back-substitution need be repeated for new right-hand side
- This is substantial savings in work, since additional triangular solutions cost only $\mathcal{O}\left(n^{2}\right)$ work, in contrast to $\mathcal{O}\left(n^{3}\right)$ cost of factorization

Sherman-Morrison Formula

- Sometimes refactorization can be avoided even when matrix does change
- Sherman-Morrison formula gives inverse of matrix resulting from rank-one change to matrix whose inverse is already known

$$
\left(\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{T}\right)^{-1}=\boldsymbol{A}^{-1}+\boldsymbol{A}^{-1} \boldsymbol{u}\left(1-\boldsymbol{v}^{T} \boldsymbol{A}^{-1} \boldsymbol{u}\right)^{-1} \boldsymbol{v}^{T} \boldsymbol{A}^{-1}
$$

where \boldsymbol{u} and \boldsymbol{v} are n-vectors

- Evaluation of formula requires $\mathcal{O}\left(n^{2}\right)$ work (for matrix-vector multiplications) rather than $\mathcal{O}\left(n^{3}\right)$ work required for inversion

Rank-One Updating of Solution

- To solve linear system $\left(\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{T}\right) \boldsymbol{x}=\boldsymbol{b}$ with new matrix, use Sherman-Morrison formula to obtain

$$
\begin{aligned}
\boldsymbol{x} & =\left(\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{T}\right)^{-1} \boldsymbol{b} \\
& =\boldsymbol{A}^{-1} \boldsymbol{b}+\boldsymbol{A}^{-1} \boldsymbol{u}\left(1-\boldsymbol{v}^{T} \boldsymbol{A}^{-1} \boldsymbol{u}\right)^{-1} \boldsymbol{v}^{T} \boldsymbol{A}^{-1} \boldsymbol{b}
\end{aligned}
$$

which can be implemented by following steps

- Solve $\boldsymbol{A} \boldsymbol{z}=\boldsymbol{u}$ for \boldsymbol{z}, so $\boldsymbol{z}=\boldsymbol{A}^{-1} \boldsymbol{u}$
- Solve $\boldsymbol{A} \boldsymbol{y}=\boldsymbol{b}$ for \boldsymbol{y}, so $\boldsymbol{y}=\boldsymbol{A}^{-1} \boldsymbol{b}$
- Compute $\boldsymbol{x}=\boldsymbol{y}+\left(\left(\boldsymbol{v}^{T} \boldsymbol{y}\right) /\left(1-\boldsymbol{v}^{T} \boldsymbol{z}\right)\right) \boldsymbol{z}$
- If \boldsymbol{A} is already factored, procedure requires only triangular solutions and inner products, so only $\mathcal{O}\left(n^{2}\right)$ work and no explicit inverses

Example: Rank-One Updating of Solution

- Consider rank-one modification

$$
\left[\begin{array}{rrr}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
2 \\
8 \\
10
\end{array}\right]
$$

(with 3, 2 entry changed) of system whose LU factorization was computed in earlier example

- One way to choose update vectors is

$$
\boldsymbol{u}=\left[\begin{array}{r}
0 \\
0 \\
-2
\end{array}\right] \quad \text { and } \quad \boldsymbol{v}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Original Matrix
$\left[\begin{array}{rrr}2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7\end{array}\right]$
so matrix of modified system is $\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{T}$

Example, continued

- Using LU factorization of \boldsymbol{A} to solve $\boldsymbol{A z}=\boldsymbol{u}$ and $\boldsymbol{A} \boldsymbol{y}=\boldsymbol{b}$,

$$
\boldsymbol{z}=\left[\begin{array}{r}
-3 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right] \quad \text { and } \quad \boldsymbol{y}=\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]
$$

- Final step computes updated solution

Q: Under what circumstances could the

- We have thus computed solution to modified system without factoring modified matrix

Sherman Morrison

[1] Solve $A \tilde{\mathbf{x}}=\tilde{\mathbf{b}}$:
$A \longrightarrow L U\left(O\left(n^{3}\right)\right.$ work $)$
Solve $L \tilde{\mathbf{y}}=\tilde{\mathbf{b}}$,
Solve $U \tilde{\mathbf{x}}=\tilde{\mathbf{y}}\left(O\left(n^{2}\right)\right.$ work $)$.
[2] New problem:

$$
\left(A-\mathbf{u v}^{T}\right) \mathbf{x}=\mathbf{b} . \quad(\text { different } \mathbf{x} \text { and } \mathbf{b})
$$

Key Idea:

- $\left(A-\mathbf{u v}^{T}\right) \mathbf{x}$ differs from $A \mathbf{x}$ by
only a small amount of information.
- Rewrite as: $A \mathbf{x}+\mathbf{u} \gamma=\mathbf{b}$

$$
\gamma:=-\mathbf{v}^{T} \mathbf{x} \longleftrightarrow \mathbf{v}^{T} \mathbf{x}+\gamma=0
$$

Sherman Morrison

Extended system:

$$
\begin{aligned}
A \mathbf{x}+\gamma \mathbf{u} & =\mathbf{b} \\
\mathbf{v}^{T} \mathbf{x}+\gamma & =0
\end{aligned}
$$

Sherman Morrison

Extended system:

$$
\begin{aligned}
A \mathbf{x}+\gamma \mathbf{u} & =\mathbf{b} \\
\mathbf{v}^{T} \mathbf{x}+\gamma & =0
\end{aligned}
$$

In matrix form:

$$
\left[\begin{array}{cc}
A & \mathbf{u} \\
\mathbf{v}^{T} & 1
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{0}
$$

Sherman Morrison

Extended system:

$$
\begin{aligned}
A \mathbf{x}+\gamma \mathbf{u} & =\mathbf{b} \\
\mathbf{v}^{T} \mathbf{x}+\gamma & =0
\end{aligned}
$$

In matrix form:

$$
\left[\begin{array}{cc}
A & \mathbf{u} \\
\mathbf{v}^{T} & 1
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{0}
$$

Eliminate for γ :

$$
\left[\begin{array}{cc}
A & \mathbf{u} \\
0 & 1-\mathbf{v}^{T} A^{-1} \mathbf{u}
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{-\mathbf{v}^{T} A^{-1} \mathbf{b}}
$$

Sherman Morrison

Extended system:

$$
\begin{aligned}
A \mathbf{x}+\gamma \mathbf{u} & =\mathbf{b} \\
\mathbf{v}^{T} \mathbf{x}+\gamma & =0
\end{aligned}
$$

In matrix form:

$$
\left[\begin{array}{cc}
A & \mathbf{u} \\
\mathbf{v}^{T} & 1
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{0}
$$

Eliminate for γ :

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & \mathbf{u} \\
0 & 1-\mathbf{v}^{T} A^{-1} \mathbf{u}
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{-\mathbf{v}^{T} A^{-1} \mathbf{b}}} \\
& \gamma=-\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1} \mathbf{b}
\end{aligned}
$$

Sherman Morrison

Extended system:

$$
\begin{aligned}
A \mathbf{x}+\gamma \mathbf{u} & =\mathbf{b} \\
\mathbf{v}^{T} \mathbf{x}+\gamma & =0
\end{aligned}
$$

In matrix form:

$$
\left[\begin{array}{cc}
A & \mathbf{u} \\
\mathbf{v}^{T} & 1
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{0}
$$

Eliminate for γ :

$$
\begin{array}{r}
{\left[\begin{array}{cc}
A & \mathbf{u} \\
0 & 1-\mathbf{v}^{T} A^{-1} \mathbf{u}
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{-\mathbf{v}^{T} A^{-1} \mathbf{b}}} \\
\gamma=-\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1} \mathbf{b} \\
\mathbf{x}=A^{-1}(\mathbf{b}-\mathbf{u} \gamma)=A^{-1}\left[\mathbf{b}+\mathbf{u}\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1} \mathbf{b}\right]
\end{array}
$$

Sherman Morrison

Extended system:

$$
\begin{aligned}
A \mathbf{x}+\gamma \mathbf{u} & =\mathbf{b} \\
\mathbf{v}^{T} \mathbf{x}+\gamma & =0
\end{aligned}
$$

In matrix form:

$$
\left[\begin{array}{cc}
A & \mathbf{u} \\
\mathbf{v}^{T} & 1
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{0}
$$

Eliminate for γ :

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & \mathbf{u} \\
0 & 1-\mathbf{v}^{T} A^{-1} \mathbf{u}
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{-\mathbf{v}^{T} A^{-1} \mathbf{b}}} \\
& \gamma=-\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1} \mathbf{b} \\
& \mathbf{x}=A^{-1}(\mathbf{b}-\mathbf{u} \gamma)=A^{-1}\left[\mathbf{b}+\mathbf{u}\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1} \mathbf{b}\right] \\
& \left(A-\mathbf{u v}^{T}\right)^{-1}=A^{-1}+A^{-1} \mathbf{u}\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1} .
\end{aligned}
$$

Sherman Morrison: Potential Singularity

- Consider the modified system: $\left(A-\mathbf{u v}^{T}\right) \mathbf{x}=\mathbf{b}$.
- The solution is

$$
\begin{aligned}
\mathbf{x} & =\left(A-\mathbf{u} \mathbf{v}^{T}\right)^{-1} \mathbf{b} \\
& =\left[I+A^{-1} \mathbf{u}\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1}\right] A^{-1} \mathbf{b}
\end{aligned}
$$

- If $1-\mathbf{v}^{T} A^{-1} \mathbf{u}=0$, failure.
- Why?

Sherman Morrison: Potential Singularity

- Let $\tilde{A}:=\left(A-\mathbf{u v}^{T}\right)$ and consider,

$$
\begin{aligned}
\tilde{A} A^{-1} & =\left(A-\mathbf{u v}^{T}\right) A^{-1} \\
& =\left(I-\mathbf{u v}^{T} A^{-1}\right) .
\end{aligned}
$$

- Look at the product $\tilde{A} A^{-1} \mathbf{u}$,

$$
\begin{aligned}
\tilde{A} A^{-1} \mathbf{u} & =\left(I-\mathbf{u v}^{T} A^{-1}\right) \mathbf{u} \\
& =\mathbf{u}-\mathbf{u} \mathbf{v}^{T} A^{-1} \mathbf{u}
\end{aligned}
$$

- If $\mathbf{v}^{T} A^{-1} \mathbf{u}=1$, then

$$
\tilde{A} A^{-1} \mathbf{u}=\mathbf{u}-\mathbf{u}=0,
$$

which means that \tilde{A} is singular since we assume that A^{-1} exists.

- Thus, an unfortunate choice of \mathbf{u} and \mathbf{v} can lead to a singular modified matrix and this singularity is indicated by $\mathbf{v}^{T} A^{-1} \mathbf{u}=1$.

Computing $\|A\|_{2}$ and $\operatorname{cond}_{2}(A)$.

- Recall: $\quad \operatorname{cond}(A):=\left\|A^{-1}\right\| \cdot\|A\|$,

$$
\begin{aligned}
& \|A\|:=\max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|} \\
& \|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}=\sqrt{\mathbf{x}^{T} \mathbf{x}} \\
& \|\mathbf{x}\|_{2}^{2}=\mathbf{x}^{T} \mathbf{x}
\end{aligned}
$$

- From now on, drop the subscript " 2 ".

$$
\begin{aligned}
\|\mathbf{x}\|^{2} & =\mathbf{x}^{T} \mathbf{x} \\
\|A \mathbf{x}\|^{2} & =(A \mathbf{x})^{T}(A \mathbf{x})=\mathbf{x}^{T} A^{T} A \mathbf{x}
\end{aligned}
$$

- Matrix norm:

$$
\begin{aligned}
\|A\|^{2} & =\max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|^{2}}{\|\mathbf{x}\|^{2}} \\
& =\max _{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} A^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \\
& =\lambda_{\max }\left(A^{T} A\right)=: \text { spectral radius of }\left(A^{T} A\right) .
\end{aligned}
$$

- The symmetric positive definite matrix $B:=A^{T} A$ has positive eigenvalues.
- All symmetric matrices B have a complete set of orthonormal eigenvectors satisfying

$$
B \mathbf{z}_{j}=\lambda_{j} \mathbf{z}_{j}, \quad \mathbf{z}_{i}^{T} \mathbf{z}_{j}=\delta_{i j}=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array} .\right.
$$

- Note: If $\lambda_{i}=\lambda_{j}, i \neq j$, then can have $\mathbf{z}_{i}^{T} \mathbf{z}_{j} \neq 0$, but we can orthogonalize \mathbf{z}_{i} and \mathbf{z}_{j} so that $\tilde{\mathbf{z}}_{i}^{T} \tilde{\mathbf{z}}_{j}=0$ and

$$
\begin{aligned}
& B \tilde{\mathbf{z}}_{i}=\lambda_{i} \tilde{\mathbf{z}}_{i} \quad \lambda_{i}=\lambda_{j} \\
& B \tilde{\mathbf{z}}_{j}=\lambda_{j} \tilde{\mathbf{z}}_{j} .
\end{aligned}
$$

- Assume eigenvalues are sorted with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.
- For any \mathbf{x} we have: $\mathbf{x}=c_{1} \mathbf{z}_{1}+c_{2} \mathbf{z}_{2}+\cdots+c_{n} \mathbf{z}_{n}$.
- Let $\|\mathbf{x}\|=1$.
- Want to find $\max _{\|\mathbf{x}\|=1} \frac{\mathbf{x}^{T} B \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\max _{\|\mathbf{x}\|=1} \mathbf{x}^{T} B \mathbf{x}$.
- Note: $\mathbf{x}^{T} \mathbf{x}=\left(\sum_{i=1}^{n} c_{i} \mathbf{z}_{i}\right)^{T}\left(\sum_{j=1}^{n} c_{j} \mathbf{z}_{j}\right)$

$$
=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} \mathbf{z}_{i}^{T} \mathbf{z}_{j}
$$

$$
=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} \delta_{i j}
$$

$$
=\sum_{i=1}^{n} c_{i}^{2}=1
$$

$$
\Longrightarrow c_{1}^{2}=1-\sum_{i=2}^{n} c_{i}^{2}
$$

$$
\begin{aligned}
\mathbf{x}^{T} B \mathbf{x} & =\left(\sum_{i=1}^{n} c_{i} \mathbf{z}_{i}\right)^{T}\left(\sum_{j=1}^{n} c_{j} B \mathbf{z}_{j}\right) \\
& =\left(\sum_{i=1}^{n} c_{i} \mathbf{z}_{i}\right)^{T}\left(\sum_{j=1}^{n} c_{j} \lambda_{j} \mathbf{z}_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \lambda_{j} c_{j} \mathbf{z}_{i}^{T} \mathbf{z}_{j} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \lambda_{j} c_{j} \delta_{i j} \\
& =\sum_{i=1}^{n} c_{i}^{2} \lambda_{i}=c_{1}^{2} \lambda_{1}+c_{2}^{2} \lambda_{2}+\cdots+c_{n}^{2} \lambda_{n} \\
& =\lambda_{1}\left[c_{1}^{2}+c_{2}^{2} \beta_{2}+\cdots+c_{n}^{2} \beta_{n}\right], \quad 0<\beta_{i}:=\frac{\lambda_{i}}{\lambda_{1}} \leq 1, \\
& =\lambda_{1}\left[\left(1-c_{2}^{2}-\cdots-c_{n}^{2}\right)+c_{2}^{2} \beta_{2}+\cdots+c_{n}^{2} \beta_{n}\right] \\
& =\lambda_{1}\left[1-\left(1-\beta_{2}\right) c_{2}^{2}+\left(1-\beta_{3}\right) c_{3}^{2}+\cdots+\left(1-\beta_{n}\right) c_{n}^{2}\right] \\
& =\lambda_{1}[1-\text { some positive (or zero) numbers }] .
\end{aligned}
$$

- Expression is maximized when $c_{2}=c_{3}=\cdots=c_{n}=0, \Longrightarrow c_{1}=1$.
- Maximum value $\mathbf{x}^{T} B \mathbf{x}=\lambda_{\max }(B)=\lambda_{1}$.
- Similarly, can show $\min \mathbf{x}^{T} B \mathbf{x}=\lambda_{\min }(B)=\lambda_{n}$.
- So, $\|A\|^{2}=\max _{\lambda} \lambda\left(A^{T} A\right)=$ spectral radius of $A^{T} A$.
- Now,

$$
\left\|A^{-1}\right\|^{2}=\max _{\mathbf{x} \neq 0} \frac{\left\|A^{-1} \mathbf{x}\right\|^{2}}{\|\mathbf{x}\|^{2}}
$$

- Let $\mathbf{x}=A \mathbf{y}$:

$$
\begin{aligned}
\left\|A^{-1}\right\|^{2} & =\max _{\mathbf{y} \neq 0} \frac{\left\|A^{-1} A \mathbf{y}\right\|^{2}}{\|A \mathbf{y}\|^{2}}=\max _{\mathbf{y} \neq 0} \frac{\|\mathbf{y}\|^{2}}{\|A \mathbf{y}\|^{2}}=\left(\min _{\mathbf{y} \neq 0} \frac{\|A \mathbf{y}\|^{2}}{\|\mathbf{y}\|^{2}}\right)^{-1} \\
& =\frac{1}{\lambda_{\min }\left(A^{T} A\right)} .
\end{aligned}
$$

- So, $\operatorname{cond}_{2}(A)=\left\|A^{-1}\right\| \cdot\|A\|$,

$$
\operatorname{cond}_{2}(A)=\sqrt{\frac{\lambda_{\max }\left(A^{T} A\right)}{\lambda_{\min }\left(A^{T} A\right)}}
$$

Special Types of Linear Systems

- Work and storage can often be saved in solving linear system if matrix has special properties
- Examples include
- Symmetric: $\boldsymbol{A}=\boldsymbol{A}^{T}, a_{i j}=a_{j i}$ for all i, j
- Positive definite: $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}>0$ for all $\boldsymbol{x} \neq \mathbf{0}$
- Band: $a_{i j}=0$ for all $|i-j|>\beta$, where β is bandwidth of \boldsymbol{A}
- Sparse: most entries of \boldsymbol{A} are zero

Symmetric Positive Definite (SPD) Matrices

\square Very common in optimization and physical processes
\square Easiest example:

If B is invertible, then $A:=B^{\top} B$ is SPD.
\square SPD systems of the form $A \underline{x}=\underline{b}$ can be solved using
(stable) Cholesky factorization $A=L L^{\top}$, or
\square iteratively with the most robust iterative solver, conjugate gradient iteration (generally with preconditioning, known as preconditioned conjugate gradients, PCG).

Cholesky Factorization and SPD Matrices.

- A is SPD: $A=A^{T}$ and $\mathbf{x}^{T} A \mathbf{x}>0$ for all $\mathbf{x} \neq 0$.
- Seek a symmetric factorization $A=\tilde{L} \tilde{L}^{T}($ not $L U)$.
- L not lower triangular but not unit lower triangular.
- That is, $L t_{i i}$ not necessarily 1.
- Alternatively, seek factorization $A=L D L^{T}$, where L is unit lower triangular and D is diagonal.
- Start with $L D L^{T}=A$.
- Clearly, $L U=A$ with $U=D L^{T}$.
- Follows from uniqueness of $L U$ factorization.
- D is a row scaling of L^{T} and thus $D_{i i}=U_{i i}$.
- A property of SPD matrices is that all pivots are positive.
- (Another property is that you do not need to pivot.)
- Consider standard update step:

$$
\begin{aligned}
a_{i j} & =a_{i j}-\frac{a_{i k} a_{k j}}{a_{k k}} \\
& =a_{i j}-\frac{a_{i k} a_{j k}}{a_{k k}}
\end{aligned}
$$

- Usual multiplier column entries are $l_{i k}=a_{i k} / a_{k k}$.
- Usual pivot row entries are $u_{k j}=a_{k j}=a_{j k}$.
- So, if we factor $1 / d_{k k}=1 / a_{k k}$ out of U, we have:

$$
\begin{aligned}
d_{k k}\left(a_{k j} / a_{k k}\right) & =d_{k k} l_{k j} \\
\longrightarrow U & =D\left(D^{-1} U\right) \\
& =D L^{T}
\end{aligned}
$$

- For Cholesky, we have

$$
A=L D L^{T}=L \sqrt{D} \sqrt{D} L^{T}=\tilde{L} \tilde{L}^{T}
$$

with $\tilde{L}=L \sqrt{D}$.

Symmetric Positive Definite Matrices

- If \boldsymbol{A} is symmetric and positive definite, then LU factorization can be arranged so that $\boldsymbol{U}=\boldsymbol{L}^{T}$, which gives Cholesky factorization

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}
$$

where L is lower triangular with positive diagonal entries

- Algorithm for computing it can be derived by equating corresponding entries of \boldsymbol{A} and $\boldsymbol{L} \boldsymbol{L}^{T}$
- In 2×2 case, for example,

$$
\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
l_{11} & 0 \\
l_{21} & l_{22}
\end{array}\right]\left[\begin{array}{cc}
l_{11} & l_{21} \\
0 & l_{22}
\end{array}\right]
$$

implies

$$
l_{11}=\sqrt{a_{11}}, \quad l_{21}=a_{21} / l_{11}, \quad l_{22}=\sqrt{a_{22}-l_{21}^{2}}
$$

Cholesky Factorization (Text)

```
Algorithm 2.7 Cholesky Factorization
    for \(k=1\) to \(n \quad\{\) loop over columns \}
        \(a_{k k}=\sqrt{a_{k k}}\)
        for \(i=k+1\) to \(n\)
        \(a_{i k}=a_{i k} / a_{k k} \quad\{\) scale current column \}
        end
        for \(j=k+1\) to \(n\)
        for \(i=j\) to \(n\)
            \(a_{i j}=a_{i j}-a_{i k} \cdot a_{j k}\)
        end
        end
    end
```

After a row scaling, this is just standard LU decomposition, exploiting symmetry in the $L U$ factors and A. ($U=L^{T}$)

Cholesky Factorization

- One way to write resulting general algorithm, in which Cholesky factor L overwrites original matrix A, is

```
for \(j=1\) to \(n\)
    for \(k=1\) to \(j-1\)
        for \(i=j\) to \(n\)
            \(a_{i j}=a_{i j}-a_{i k} \cdot a_{j k}\)
        end
    end
    \(a_{j j}=\sqrt{a_{j j}}\)
    for \(k=j+1\) to \(n\)
        \(a_{k j}=a_{k j} / a_{j j}\)
    end
end
```


Cholesky Factorization, continued

- Features of Cholesky algorithm for symmetric positive definite matrices
- All n square roots are of positive numbers, so algorithm is well defined
- No pivoting is required to maintain numerical stability
- Only lower triangle of \boldsymbol{A} is accessed, and hence upper triangular portion need not be stored
- Only $n^{3} / 6$ multiplications and similar number of additions are required
- Thus, Cholesky factorization requires only about half work and half storage compared with LU factorization of general matrix by Gaussian elimination, and also avoids need for pivoting

Linear Algebra Very Short Summary

Main points:
\square Conditioning of matrix cond(A) bounds our expected accuracy.
\square e.g., if cond $(A) \sim 10^{5}$ we expect at most 11 significant digits in \underline{x}.
Why?
\square We start with IEEE double precision - 16 digits. We lose 5 because condition (A) $\sim 10^{5}$, so we have $11=16-5$.

Stable algorithm (i.e., pivoting) important to realizing this bound.
\square Some systems don't need pivoting (e.g., SPD, diagonally dominant)
\square Unstable algorithms can sometimes be rescued with iterative refinement.

- Costs:
\square Full matrix $\rightarrow \mathrm{O}\left(\mathrm{n}^{2}\right)$ storage, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ work (wall-clock time)
\square Sparse or banded matrix, substantially less.
\square The following slides present the book's derivation of the LU factorization process.
\square I'll highlight a few of them that show the equivalence between the outer product approach and the elementary elimination matrix approach.

Example: Triangular Linear System

$$
\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
8
\end{array}\right]
$$

- Using back-substitution for this upper triangular system, last equation, $4 x_{3}=8$, is solved directly to obtain $x_{3}=2$
- Next, x_{3} is substituted into second equation to obtain $x_{2}=2$
- Finally, both x_{3} and x_{2} are substituted into first equation to obtain $x_{1}=-1$

Elimination

- To transform general linear system into triangular form, we need to replace selected nonzero entries of matrix by zeros
- This can be accomplished by taking linear combinations of rows
- Consider 2-vector $\boldsymbol{a}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$
- If $a_{1} \neq 0$, then

$$
\left[\begin{array}{cc}
1 & 0 \\
-a_{2} / a_{1} & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
0
\end{array}\right]
$$

Elementary Elimination Matrices

- More generally, we can annihilate all entries below k th position in n-vector \boldsymbol{a} by transformation

$$
\boldsymbol{M}_{k} \boldsymbol{a}=\left[\begin{array}{cccccc}
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & -m_{k+1} & 1 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & -m_{n} & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k} \\
a_{k+1} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $m_{i}=a_{i} / a_{k}, i=k+1, \ldots, n$

- Divisor a_{k}, called pivot, must be nonzero

Elementary Elimination Matrices, continued

- Matrix M_{k}, called elementary elimination matrix, adds multiple of row k to each subsequent row, with multipliers m_{i} chosen so that result is zero
- M_{k} is unit lower triangular and nonsingular
- $\boldsymbol{M}_{k}=\boldsymbol{I}-\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}$, where $\boldsymbol{m}_{k}=\left[0, \ldots, 0, m_{k+1}, \ldots, m_{n}\right]^{T}$ and e_{k} is k th column of identity matrix
- $\boldsymbol{M}_{k}^{-1}=\boldsymbol{I}+\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}$, which means $\boldsymbol{M}_{k}^{-1}=: \boldsymbol{L}_{k}$ is same as \boldsymbol{M}_{k} except signs of multipliers are reversed

Elementary Elimination Matrices, continued

- If $M_{j}, j>k$, is another elementary elimination matrix, with vector of multipliers \boldsymbol{m}_{j}, then

$$
\begin{aligned}
\boldsymbol{M}_{k} \boldsymbol{M}_{j} & =\boldsymbol{I}-\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}-\boldsymbol{m}_{j} \boldsymbol{e}_{j}^{T}+\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T} \boldsymbol{m}_{j} \boldsymbol{e}_{j}^{T} \\
& =\boldsymbol{I}-\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}-\boldsymbol{m}_{j} \boldsymbol{e}_{j}^{T}
\end{aligned}
$$

which means product is essentially "union," and similarly for product of inverses, $\boldsymbol{L}_{k} \boldsymbol{L}_{j}$

Comment on update step and $\underline{m}_{k} \underline{e}^{T} k$

- Recall, $\underline{v}=\mathrm{C} \underline{\mathrm{w}} \in \operatorname{span}\{\mathrm{C}\}$.
$\therefore \mathrm{V}=\left(\underline{\mathrm{v}}_{1} \underline{\mathrm{v}}_{2} \ldots \underline{\mathrm{v}}_{\mathrm{n}}\right)=\mathrm{C}\left(\underline{\mathrm{w}}_{1} \underline{\mathrm{w}}_{2} \ldots \underline{\mathrm{w}}_{\mathrm{n}}\right) \in \operatorname{span}\{\mathrm{C}\}$.

If $\mathrm{C}=\underline{\mathrm{c}}$, i.e., C is a column vector and therefore of rank 1 , then V is in span\{C\} and is of rank 1.
\square All columns of V are multiples of \underline{c}.
\square Thus, $W=\underline{c} \underline{r}^{\top}$ is an $n \times n$ matrix of rank 1 .

- All columns are multiples of the first column and
- All rows are multiples of the first row.

Elementary Elimination Matrices, continued

- Matrix M_{k}, called elementary elimination matrix, adds multiple of row k to each subsequent row, with multipliers m_{i} chosen so that result is zero
- M_{k} is unit lower triangular and nonsingular
- $\boldsymbol{M}_{k}=\boldsymbol{I}-\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}$, where $\boldsymbol{m}_{k}=\left[0, \ldots, 0, m_{k+1}, \ldots, m_{n}\right]^{T}$ and e_{k} is k th column of identity matrix
- $\boldsymbol{M}_{k}^{-1}=\boldsymbol{I}+\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}$, which means $\boldsymbol{M}_{k}^{-1}=: \boldsymbol{L}_{k}$ is same as \boldsymbol{M}_{k} except signs of multipliers are reversed

Existence, Uniqueness, and Conditioning
Solving Linear Systems Special Types of Linear Systems Software for Linear Systems

Example: Elementary Elimination Matrices

- For $\boldsymbol{a}=\left[\begin{array}{r}2 \\ 4 \\ -2\end{array}\right]$,

$$
\boldsymbol{M}_{1} \boldsymbol{a}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

and

$$
\boldsymbol{M}_{2} \boldsymbol{a}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 / 2 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right]
$$

Example, continued

- Note that

$$
\boldsymbol{L}_{1}=\boldsymbol{M}_{1}^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], \quad \boldsymbol{L}_{2}=\boldsymbol{M}_{2}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 / 2 & 1
\end{array}\right]
$$

and

$$
\boldsymbol{M}_{1} \boldsymbol{M}_{2}=\left[\begin{array}{rcc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 1 / 2 & 1
\end{array}\right], \quad \boldsymbol{L}_{1} \boldsymbol{L}_{2}=\left[\begin{array}{rcc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -1 / 2 & 1
\end{array}\right]
$$

Gaussian Elimination

- To reduce general linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ to upper triangular form, first choose M_{1}, with a_{11} as pivot, to annihilate first column of \boldsymbol{A} below first row
- System becomes $\boldsymbol{M}_{1} \boldsymbol{A x}=\boldsymbol{M}_{1} \boldsymbol{b}$, but solution is unchanged
- Next choose M_{2}, using a_{22} as pivot, to annihilate second column of $\boldsymbol{M}_{1} \boldsymbol{A}$ below second row
- System becomes $M_{2} M_{1} \boldsymbol{A x}=\boldsymbol{M}_{2} \boldsymbol{M}_{1} \boldsymbol{b}$, but solution is still unchanged
- Process continues for each successive column until all subdiagonal entries have been zeroed

Gaussian Elimination

- To reduce general linear system $\boldsymbol{A x}=\boldsymbol{b}$ to upper triangular form, first choose \boldsymbol{M}_{1}, with a_{11} as pivot, to annihilate first column of \boldsymbol{A} below first row
- System becomes $\boldsymbol{M}_{1} \boldsymbol{A x}=\boldsymbol{M}_{1} \boldsymbol{b}$, but solution is unchanged
- Next choose M_{2}, using a_{22} as pivot, to annihilate second column of $M_{1} A$ below second row
- System becomes $\boldsymbol{M}_{2} M_{1} \boldsymbol{A x}=M_{2} M_{1} \boldsymbol{b}$, but solution is still unchanged
- Technically, this should be a^{\prime}, the 2-2 entry in $A^{\prime}:=M_{1} A$. Thus, we don't know all the pivots in advance.

Gaussian Elimination, continued

- Resulting upper triangular linear system

$$
\begin{aligned}
M_{n-1} \cdots M_{1} \boldsymbol{A} \boldsymbol{x} & =\boldsymbol{M}_{n-1} \cdots \boldsymbol{M}_{1} \boldsymbol{b} \\
\boldsymbol{M A \boldsymbol { A }} & =\boldsymbol{M b}
\end{aligned}
$$

can be solved by back-substitution to obtain solution to original linear system $\boldsymbol{A x}=\boldsymbol{b}$

- Process just described is called Gaussian elimination

LU Factorization

- Product $\boldsymbol{L}_{k} \boldsymbol{L}_{j}$ is unit lower triangular if $k<j$, so

$$
\boldsymbol{L}=\boldsymbol{M}^{-1}=\boldsymbol{M}_{1}^{-1} \cdots \boldsymbol{M}_{n-1}^{-1}=\boldsymbol{L}_{1} \cdots \boldsymbol{L}_{n-1}
$$

is unit lower triangular

- By design, $U=M A$ is upper triangular
- So we have

$$
A=\boldsymbol{L} \boldsymbol{U}
$$

with L unit lower triangular and \boldsymbol{U} upper triangular

- Thus, Gaussian elimination produces $L U$ factorization of matrix into triangular factors

LU Factorization, continued

- Having obtained LU factorization, $\boldsymbol{A x}=\boldsymbol{b}$ becomes $\boldsymbol{L U} \boldsymbol{x}=\boldsymbol{b}$, and can be solved by forward-substitution in lower triangular system $\boldsymbol{L} \boldsymbol{y}=\boldsymbol{b}$, followed by back-substitution in upper triangular system $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{y}$
- Note that $\boldsymbol{y}=\boldsymbol{M b}$ is same as transformed right-hand side in Gaussian elimination
- Gaussian elimination and LU factorization are two ways of expressing same solution process

Example: Gaussian Elimination

- Use Gaussian elimination to solve linear system

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{rrr}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
2 \\
8 \\
10
\end{array}\right]=\boldsymbol{b}
$$

- To annihilate subdiagonal entries of first column of \boldsymbol{A},

$$
\begin{gathered}
\boldsymbol{M}_{1} \boldsymbol{A}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right]=\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 1 & 5
\end{array}\right], \\
\boldsymbol{M}_{1} \boldsymbol{b}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
8 \\
10
\end{array}\right]=\left[\begin{array}{r}
2 \\
4 \\
12
\end{array}\right]
\end{gathered}
$$

Example, continued

- To annihilate subdiagonal entry of second column of $M_{1} A$,

$$
\begin{gathered}
\boldsymbol{M}_{2} \boldsymbol{M}_{1} \boldsymbol{A}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 1 & 5
\end{array}\right]=\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]=\boldsymbol{U}, \\
\boldsymbol{M}_{2} \boldsymbol{M}_{1} \boldsymbol{b}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
4 \\
12
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
8
\end{array}\right]=\boldsymbol{M} \boldsymbol{b}
\end{gathered}
$$

Example, continued

- We have reduced original system to equivalent upper triangular system

$$
\boldsymbol{U} \boldsymbol{x}=\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
8
\end{array}\right]=\boldsymbol{M} \boldsymbol{b}
$$

which can now be solved by back-substitution to obtain

$$
\boldsymbol{x}=\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]
$$

Existence, Uniqueness, and Conditioning
Solving Linear Systems Special Types of Linear Systems Software for Linear Systems

Triangular Systems

Example, continued

- To write out LU factorization explicitly,

$$
\boldsymbol{L}_{1} \boldsymbol{L}_{2}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]=\boldsymbol{L}
$$

so that

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]=\boldsymbol{L} \boldsymbol{U}
$$

