Failure to pivot can result in all subsequent rows looking like multiples of the kth row:

Consider

$$A = \begin{pmatrix} \epsilon & -\underline{r}_1^T - \\ a_{21} & -\underline{r}_2^T - \\ a_{31} & -\underline{r}_3^T - \\ \vdots & -\vdots - \end{pmatrix}$$

Gaussian elimination leads to

$$\underline{r}_i \leftarrow \underline{r}_i - \frac{a_{i1}}{\epsilon}\underline{r}_1 \approx -\frac{a_{i1}}{\epsilon}\underline{r}_1.$$

Matlab example "pivot.m"

End of Lecture 3

pivot_gui.m

1.0e-18	1.0000	2.0000	3.0000	4.0000
1.0000	4.0000	4.0000	6.0000	1.0000
2.0000	8.0000	7.0000	9.0000	2.0000
3.0000	6.0000	1.0000	3.0000	3.0000
4.0000	4.0000	2.0000	8.0000	4.0000

Failure to Pivot, Noncatastrophic Case

- In cases where the nominal pivot is small but > ϵ_M , we are effectively reducing the number of significant digits that represent the remainder of the matrix A.
- □ In essence, we are driving the rows (or columns) to be *similar*, which is equivalent to saying that we have nearly parallel columns.
- We will see next time a 2 x 2 example where the condition number of the matrix with 2 unit-norm vectors scales like 2 / θ , where θ is the (small) angle between the column vectors.

Partial Pivoting: Costs

Procedure:

- For each k, pick k' such that $|a_{k'k}| \ge |a_{ik}|, i \ge k$.
- Swap rows k and k'.
- Proceed with central update step: $A^{(k+1)} = A^{(k)} \mathbf{c}_k \mathbf{r}_k^T$

Costs:

- For each step, search is O(n-k), total cost is $\approx n^2/2$.
- For each step, row swap is O(n-k), total cost is $\approx n^2/2$.
- Total cost for partial pivoting is $O(n^2)\lambda 2n^3/3$.
- If we use full pivoting, total search cost such that $|a_{k'k''}| \ge |a_{ij}|, i, j \ge k$, is $O(n^3)$.
- Row and column exchange costs still total only $O(n^2)$.

Notes:

- Partial (row) pivoting ensures that multiplier column entries have modulus ≤ 1 . (Good.)
- Full pivoting also destroys band structure, whereas partial pivoting leaves some band structure intact.

Partial Pivoting: LU=PA

- \bullet Note: If we swap rows of A, we are swapping equations.
- We must swap rows of **b**.
- LU routines normally return the pivot index vector to effect this exchange.
- \bullet Nominally, it looks like a permutation matrix P, which is simply the identity matrix with rows interchanged.
- \bullet If we swap equations, we must also swap rows of L
- If we are consistent, we can swap rows at any time (i.e., A, or L) and get the same final factorization: LU = PA.
- Most codes swap $A^{(k+1)}$, but not the factors in L that have already been stored.
- Swapping rows of $A^{(k+1)}$ helps with speed (vectorization) of $A^{(k+1)} = A^{(k)} \mathbf{c}_k \mathbf{r}_k^T$.
- In parallel computing, one would *not* swap the pivot row. Just pass the pointer to the processor holding the new pivot row, where the swap would take place locally.

Pivoting, continued

- Although pivoting is generally required for stability of Gaussian elimination, pivoting is not required for some important classes of matrices
 - Diagonally dominant

$$\sum_{i=1, i \neq j}^{n} |a_{ij}| < |a_{jj}|, \quad j = 1, \dots, n$$

Symmetric positive definite

$$m{A} = m{A}^T$$
 and $m{x}^T m{A} m{x} > 0$ for all $m{x} \neq m{0}$

Uniqueness of LU Factorization

- Despite variations in computing it, LU factorization is unique up to diagonal scaling of factors
- Provided row pivot sequence is same, if we have two LU factorizations $PA = LU = \hat{L}\hat{U}$, then $\hat{L}^{-1}L = \hat{U}U^{-1} = D$ is both lower and upper triangular, hence diagonal
- ullet If both $m{L}$ and $\hat{m{L}}$ are unit lower triangular, then $m{D}$ must be identity matrix, so $m{L}=\hat{m{L}}$ and $m{U}=\hat{m{U}}$
- Uniqueness is made explicit in LDU factorization PA = LDU, with L unit lower triangular, U unit upper triangular, and D diagonal

Storage Management

- Elementary elimination matrices M_k , their inverses L_k , and permutation matrices P_k used in formal description of LU factorization process are *not* formed explicitly in actual implementation
- U overwrites upper triangle of A, multipliers in L overwrite strict lower triangle of A, and unit diagonal of L need not be stored
- Row interchanges usually are not done explicitly; auxiliary integer vector keeps track of row order in original locations

Inversion vs. Factorization

- Even with many right-hand sides b, inversion never overcomes higher initial cost, since each matrix-vector multiplication $A^{-1}b$ requires n^2 operations, similar to cost of forward- and back-substitution
- Inversion gives less accurate answer; for example, solving 3x=18 by division gives x=18/3=6, but inversion gives $x=3^{-1}\times 18=0.333\times 18=5.99$ using 3-digit arithmetic
- Matrix inverses often occur as convenient notation in formulas, but explicit inverse is rarely required to implement such formulas
- For example, product $A^{-1}B$ should be computed by LU factorization of A, followed by forward- and back-substitutions using each column of B

Band Matrices

- Gaussian elimination for band matrices differs little from general case — only ranges of loops change
- Typically matrix is stored in array by diagonals to avoid storing zero entries
- If pivoting is required for numerical stability, bandwidth can grow (but no more than double)
- General purpose solver for arbitrary bandwidth is similar to code for Gaussian elimination for general matrices
- For fixed small bandwidth, band solver can be extremely simple, especially if pivoting is not required for stability

Tridiagonal Matrices

end

Consider tridiagonal matrix

$$\mathbf{A} = \begin{bmatrix} b_1 & c_1 & 0 & \cdots & 0 \\ a_2 & b_2 & c_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & \cdots & 0 & a_n & b_n \end{bmatrix}$$

Gaussian elimination without pivoting reduces to

Tridiagonal Matrices, continued

LU factorization of A is then given by

$$\boldsymbol{L} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ m_2 & 1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & m_{n-1} & 1 & 0 \\ 0 & \cdots & 0 & m_n & 1 \end{bmatrix}, \quad \boldsymbol{U} = \begin{bmatrix} d_1 & c_1 & 0 & \cdots & 0 \\ 0 & d_2 & c_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & d_{n-1} & c_{n-1} \\ 0 & \cdots & \cdots & 0 & d_n \end{bmatrix}$$

Example of Banded Systems

☐ Graphs (i.e., matrices) arising from differential equations in 1D, 2D, 3D (and higher...) are generally banded and sparse.

■ Example:

$$-\frac{d^2u}{dx^2} = f(x) \longrightarrow -\frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} \approx f_i$$

In Matrix Form

$$-\frac{d^2u}{dx^2} = f(x) \longrightarrow -\frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} \approx f_i$$

$$A_{1D} = rac{1}{h^2} \left(egin{array}{cccc} 2 & -1 & & & & \\ -1 & 2 & -1 & & & & \\ & & -1 & \ddots & \ddots & & \\ & & & \ddots & \ddots & -1 \\ & & & & -1 & 2 \end{array}
ight) \left(egin{array}{c} u_1 \\ u_2 \\ \vdots \\ \vdots \\ u_m \end{array}
ight) = \left(egin{array}{c} f_1 \\ f_2 \\ \vdots \\ \vdots \\ f_m \end{array}
ight)$$

Banded, tridiagonal matrix ("1D Poisson Operator")

Some Hints For HW1

• Consider the tridiagonal matrix system, $A\underline{x} = \underline{f}$,

$$\underbrace{\begin{pmatrix}
b_1 & c_1 & & & \\
a_2 & b_2 & c_2 & & \\
& a_3 & \ddots & \ddots & \\
& & \ddots & \ddots & c_{n-1} \\
& & & A
\end{pmatrix}}_{A}
\underbrace{\begin{pmatrix}
x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n
\end{pmatrix}}_{x_n} = \underbrace{\begin{pmatrix}
f_1 \\ f_2 \\ \vdots \\ \vdots \\ f_n
\end{pmatrix}}_{\underline{f}}.$$

- When solving this system, one only needs to store five vectors of length O(n), namely, \underline{a} , \underline{b} , \underline{c} , \underline{x} , and \underline{f} . (Often, the solution is overwritten onto \underline{f} , so you don't actually need \underline{x} .) The code provided implements a tridiagonal system solve for this class of problems.
- Gaussian elimination for this system leads to the following pseudocode for the forward solve:

for i=2:n
$$a_i = a_i/b_{i-1} \qquad \text{% Store row multiplier.}$$

$$b_i = b_i - a_i * c_{i-1} \qquad \text{% Update row } i \text{ of } A.$$

$$f_i = f_i - a_i * f_{i-1} \qquad \text{% Update row } i \text{ of } \underline{f}.$$
 end

- The preceding loop factors the matrix A into the product LU = A, where L is unit-lower triangular and U is upper triangular. It also maps the original right-hand side to $\underline{f} \longleftarrow L^{-1}\underline{f}$.
- The remaining step is to compute $\underline{x} \longleftarrow U^{-1}\underline{f}$:

$$\underbrace{\begin{pmatrix}
b_1 & c_1 \\
b_2 & c_2 \\
& \ddots & \ddots \\
& & b_n
\end{pmatrix}}_{U} \underbrace{\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
\vdots \\
x_n
\end{pmatrix}}_{X_n} = \underbrace{\begin{pmatrix}
f_1 \\
f_2 \\
\vdots \\
\vdots \\
f_n
\end{pmatrix}}_{\underline{f}}.$$

• Pseudocode for this system is

$$x_n = f_n / b_n$$
for i=(n-1):1
$$x_i = \frac{1}{b_i} (f_i - c_i * x_{i+1})$$
end

• For the HW, you are asked to solve a *periodic* matrix, which can be cast in the following form

$$\underbrace{\begin{pmatrix} b_{1} & c_{1} & & & d_{1} \\ a_{2} & b_{2} & c_{2} & & d_{2} \\ & a_{3} & \ddots & \ddots & & \vdots \\ & & \ddots & \ddots & c_{n-2} & d_{n-2} \\ & & & a_{n-1} & b_{n-1} & d_{n-1} \\ e_{1} & e_{2} & \cdots & e_{n-2} & e_{n-1} & d_{n} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ \vdots \\ x_{n} \end{pmatrix}}_{\underline{x}} = \underbrace{\begin{pmatrix} f_{1} \\ f_{2} \\ \vdots \\ \vdots \\ f_{n} \end{pmatrix}}_{\underline{x}}.$$

- Factorization of the principal (leading) $(n-1) \times (n-1)$ tridiagonal submatrix will proceed as before.
- In addition, you'll need to update the last row (\underline{e}^T) and column (\underline{d}) .
- When you get to the final 2×2 block you have interactions between the \underline{b} , \underline{e} , and \underline{d} vectors that should be treated outside of the *for* loop.
- Proceed with standard Gaussian elimination for this phase and then with backward substitution for the remaining upper triangular system.

General Band Matrices

- In general, band system of bandwidth β requires $\mathcal{O}(\beta n)$ storage, and its factorization requires $\mathcal{O}(\beta^2 n)$ work
- Compared with full system, savings is substantial if $\beta \ll n$

Banded Systems

- □ Significant savings in storage and work if A is banded \rightarrow a_{ij} = 0 if $|i-j| > \beta$
- ☐ The LU factors preserve the nonzero structure of A (unless there is pivoting, in which case, the bandwidth of L can grow by at most 2x).
- Storage / solve costs for LU is \sim 2n β
- Factor cost is \sim n β^2 << n³

Definitely Do Not Invert A or L or U for *Banded Systems*

Solver Times, Banded, Cholesky (SPD), Full

Solver Times, Banded, Cholesky (SPD), Full

```
% Demo of banded-matrix costs
clear all;
for pass=1:2;
beta=10;
for k=4:13; n = 2^k;
   R=9*eye(n) + rand(n,n); S=R'*R; A=spalloc(n,n,1+2*beta);
   for i=1:n; j0=max(1,i-beta); j1=min(n,i+beta);
       A(i,j0:j1)=R(i,j0:j1);
   end:
   tstart=tic; [L,U]=lu(A); tsparse(k) = toc(tstart);
   tstart=tic; [L,U]=lu(R); tfull(k) = toc(tstart);
   tstart=tic; [C]=chol(S); tchol(k) = toc(tstart);
   nk(k)=n;
   sk(k) = (2*(n^3)/3)/(1.e9*tfull(k)); % GFLOPS
   ck(k) = (2*(n^3)/3)/(1.e9*tchol(k)); % GFLOPS
   [n tsparse(k) tfull(k) tchol(k)]
end:
loglog(nk,tsparse,'r.-',nk,tfull,'b.-',nk,tchol,'k.-')
axis square; title('LU time for full, banded, and SPD matrices')
```


- Active submatrix for matrix with bandwidth b is (b x b).
- Work for outer product is cr^T, which is outer product of two vectors of length b.
- So, total work is ~ n x (b²)
 x 2 operations to convert A into LU.
- If we have pivoting, then bandwidth of U can grow by 2x.

- → Pivoting can pull a row that has 2b nonzeros to right of diagonal.
- U can end up with bandwidth 2b.

- Pivoting can pull a row that has 2b nonzeros to right of diagonal.
- U can end up with bandwidth 2b.

- Pivoting can pull a row that has 2b nonzeros to right of diagonal.
- U can end up with bandwidth 2b.

pivot_gui_band demo

0.3808	0.3687	0.9319	0.7159	0	0	0	0	0	0
0	0.6074	0.8979	0.8132	0.8964	0.8443	0	0	0	0
0.0341	0.4704	-0.1058	0.5477	0.2857	-0.3972	0	0	0	0
0.4967	0.2730	-0.0850	-0.5775	-0.2447	-0.2305	0	0	0	0
0	0	0.3564	0.1630	0.1818	0.5544	0.1102	0	0	0
0	0	0	0.0605	0.1366	0.7068	0.0704	0.0576	0	0
0	0	0	0	0.4603	0.5187	0.1690	0.4586	0.1100	0
0	0	0	0	0	0.9951	0.8019	0.8349	0.8467	0.1633
0	0	0	0	0	0	0.4288	0.7628	0.8159	0.2321
0	0	0	0	0	0	0	0.2054	0.3190	0.9207

Partial pivoting \$

LINPACK and LAPACK

- LINPACK is software package for solving wide variety of systems of linear equations, both general dense systems and special systems, such as symmetric or banded
- Solving linear systems of such fundamental importance in scientific computing that LINPACK has become standard benchmark for comparing performance of computers
- LAPACK is more recent replacement for LINPACK featuring higher performance on modern computer architectures, including some parallel computers

Basic Linear Algebra Subprograms

- High-level routines in LINPACK and LAPACK are based on lower-level Basic Linear Algebra Subprograms (BLAS)
- BLAS encapsulate basic operations on vectors and matrices so they can be optimized for given computer architecture while high-level routines that call them remain portable
- Higher-level BLAS encapsulate matrix-vector and matrix-matrix operations for better utilization of memory hierarchies such as cache and virtual memory with paging
- Generic Fortran versions of BLAS are available from Netlib, and many computer vendors provide custom versions optimized for their particular systems

Examples of BLAS

Level	Work	Examples	Function
1	$\mathcal{O}(n)$	saxpy	$Scalar \times vector + vector$
		sdot	Inner product
		snrm2	Euclidean vector norm
2	$\mathcal{O}(n^2)$	sgemv	Matrix-vector product
		strsv	Triangular solution
		sger	Rank-one update
3	$\mathcal{O}(n^3)$	sgemm	Matrix-matrix product
		strsm	Multiple triang. solutions
		ssyrk	Rank- k update

 Level-3 BLAS have more opportunity for data reuse, and hence higher performance, because they perform more operations per data item than lower-level BLAS

Vector Norms

- Magnitude, modulus, or absolute value for scalars generalizes to norm for vectors
- We will use only *p*-norms, defined by

$$\|\boldsymbol{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

for integer p > 0 and n-vector \boldsymbol{x}

- Important special cases
 - 1-norm: $\|x\|_1 = \sum_{i=1}^n |x_i|$
 - 2-norm: $\|x\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$
 - ∞ -norm: $\|\boldsymbol{x}\|_{\infty} = \max_i |x_i|$

Next Topics

- Conditioning (This material is in the first part of Chapter 2.)
 - Measuring errors
 - Defining measures (norms)
 - □ Condition number (Be aware of why condition number is important.)

- Special matrices:
 - □ Rank-1 updates: Sherman Morrison
 - Tensor-product matrices (online notes)

Vector Norms

- Magnitude, modulus, or absolute value for scalars generalizes to norm for vectors
- We will use only *p*-norms, defined by

$$\|\boldsymbol{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

for integer p > 0 and n-vector \boldsymbol{x}

- Important special cases
 - 1-norm: $\|x\|_1 = \sum_{i=1}^n |x_i|$
 - 2-norm: $\|x\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$
 - ∞ -norm: $\|\boldsymbol{x}\|_{\infty} = \max_i |x_i|$

Example: Vector Norms

Drawing shows unit sphere in two dimensions for each norm

Norms have following values for vector shown

$$\|\boldsymbol{x}\|_1 = 2.8 \quad \|\boldsymbol{x}\|_2 = 2.0 \quad \|\boldsymbol{x}\|_{\infty} = 1.6$$

Equivalence of Norms

- In general, for any vector ${\boldsymbol x}$ in \mathbb{R}^n , $\|{\boldsymbol x}\|_1 \ge \|{\boldsymbol x}\|_2 \ge \|{\boldsymbol x}\|_\infty$
- However, we also have

$$\|\boldsymbol{x}\|_{1} \leq \sqrt{n} \|\boldsymbol{x}\|_{2}, \quad \|\boldsymbol{x}\|_{2} \leq \sqrt{n} \|\boldsymbol{x}\|_{\infty}, \quad \|\boldsymbol{x}\|_{1} \leq n \|\boldsymbol{x}\|_{\infty}$$

- Thus, for given n, norms differ by at most a constant, and hence are equivalent: if one is small, they must all be proportionally small.
- ☐ Important Point: Equivalence of Norms (for n fixed):

For all vector norms $||\underline{\mathbf{x}}||_{\mathsf{m}}$ and $||\underline{\mathbf{x}}||_{\mathsf{M}} \exists$ constants c and C such that

$$c \, ||\underline{x}||_m \leq ||\underline{x}||_M \leq C \, ||\underline{x}||_m$$

Allows us to work with the norm that is most convenient.

Properties of Vector Norms

- For any vector norm
 - $\|\boldsymbol{x}\| > 0$ if $\boldsymbol{x} \neq \boldsymbol{0}$
 - $\|\gamma x\| = |\gamma| \cdot \|x\|$ for any scalar γ
 - $\|x+y\| \le \|x\| + \|y\|$ (triangle inequality)
- In more general treatment, these properties taken as definition of vector norm
- Useful variation on triangle inequality

$$ullet \| \| x \| - \| y \| \| \le \| x - y \|$$

 Matrix norm corresponding to given vector norm is defined by

$$\|oldsymbol{A}\| = \max_{oldsymbol{x}
eq oldsymbol{0}} rac{\|oldsymbol{A}oldsymbol{x}\|}{\|oldsymbol{x}\|}$$

 Norm of matrix measures maximum stretching matrix does to any vector in given vector norm

Matrix Norms

For any vector norm $||\underline{x}||_*$, define

$$||A||_* = \max_{\underline{x} \neq 0} \frac{||A\underline{x}||_*}{||\underline{x}||_*} = \max_{||\underline{x}||_* = 1} ||A\underline{x}||_*$$

Often called the induced or subordinate matrix norm associated with the vector norm ||x||*

Q: Can a matrix norm be less than 1?

Matrix Norms

 Matrix norm corresponding to vector 1-norm is maximum absolute column sum

$$\|A\|_1 = \max_j \sum_{i=1}^n |a_{ij}|$$

 Matrix norm corresponding to vector ∞-norm is maximum absolute row sum

$$\|\boldsymbol{A}\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

• Handy way to remember these is that matrix norms agree with corresponding vector norms for $n \times 1$ matrix

- **Questions**:
 - What is the 1-norm of the matrix below?
 - \square What is the ∞ -norm ?

$$B = \begin{bmatrix} 1 & 4 & -2 \\ 4 & 2 & -5 \\ 0 & -5 & 3 \end{bmatrix}$$

Matrix Norms: 2-norm

- ☐ The 2-norm of a symmetric matrix is max_i $|\lambda_i|$
- lacksquare Here, λ_i is the ith eigenvalue of A
- We say A is symmetric if $a_{ij} = a_{ji}$ for $i,j \in \{1,2,...,n\}^2$
- \Box That is, $A = A^T$ (A is equal to its transpose)

Properties of Matrix Norms

- Any matrix norm satisfies
 - ||A|| > 0 if $A \neq 0$
 - $\|\gamma A\| = |\gamma| \cdot \|A\|$ for any scalar γ
 - $||A + B|| \le ||A|| + ||B||$
- Matrix norms we have defined also satisfy
 - ullet $\|AB\| \leq \|A\| \cdot \|B\|$
 - ullet $\|Ax\| \leq \|A\| \cdot \|x\|$ for any vector x

- Matrix norms are particularly useful in analyzing iterative solvers.
- Consider the system $A\mathbf{x} = \mathbf{b}$ to be solved with the following iterative scheme.
- Start with initial guess $\mathbf{x}_0 = 0$ and, for $k=0, 1, \ldots$,

$$\mathbf{x}_{k+1} = \mathbf{x}_k + M \left(\mathbf{b} - A \mathbf{x}_k \right). \tag{1}$$

- Let G := I MA. We can use the matrix norm of G to bound the error in the above iteration and determine its rate of convergence.
- Begin by defining the error to be $\mathbf{e}_k := \mathbf{x} \mathbf{x}_k$.
- Note that $\mathbf{b} A\mathbf{x}_k = A\mathbf{x} A\mathbf{x}_k = A(\mathbf{x} \mathbf{x}_k) = A\mathbf{e}_k$.
- Using the preceding result and subtracting (1) from the equation $\mathbf{x} = \mathbf{x}$ yields the error equation

$$\mathbf{e}_{k+1} = \mathbf{e}_k - M A \mathbf{e}_k = [I - MA] \mathbf{e}_k = G \mathbf{e}_k.$$

• Error equation

$$\mathbf{e}_{k+1} = \mathbf{e}_k - M A \mathbf{e}_k = [I - MA] \mathbf{e}_k = G \mathbf{e}_k.$$

• From the definition of the matrix norm, we have

$$||\mathbf{e}_k|| \le ||G|| ||\mathbf{e}_{k-1}|| \le ||G||^2 ||\mathbf{e}_{k-2}|| \dots \le ||G||^k ||\mathbf{e}_0||$$

• With $\mathbf{x}_0 = 0$, we have $\mathbf{e}_0 = \mathbf{x}$ and thus the relative error

$$\frac{||\mathbf{e}_k||}{||\mathbf{x}||} \le ||G||^k$$

- If ||G|| < 1, the scheme (1) is convergent.
- By the equivalence of norms, if ||G|| < 1 for any matrix norm, it is convergent.
- Q: Suppose $|G| \le 0.25$. What is the bound on the number of iterations required to converge to machine precision in IEEE 64-bit arithmetic? (Hint: Think carefully. What is the best base to use in considering this question?)

• Consider the following example:

$$A = nI + 0.1 R, R = \text{rand}(n, n) r_{ij} \in [0, 1]$$

 $M = \text{diag}(1/a_{ii})$

• In this case,

$$g_{ii} = 0$$
 $g_{ij} = 0.1 \frac{-r_{ij}}{n + 0.1 r_{ii}}$

• The ∞ -norm for G is given by

$$||G||_{\infty} = \max_{i} \sum_{j=1}^{n} |g_{ij}| \le \max_{i} \sum_{i \neq j} M^* = (n-1)M^*,$$

where

$$M^* := \max_{i \neq j} |g_{ij}| < \frac{0.1}{n}.$$

- In this case, we have a relative error bounded by $||G||_{\infty}^k \leq (0.1)^k$.
- Q: Estimate the number of iterations required to reduce the error to machine epsilon when using IEEE 64-bit floating point arithmetic.

• Recall, the algorithm is computable:

$$\mathbf{x}_k = \mathbf{x}_{k-1} + M \left(\mathbf{b} - A \mathbf{x}_{k-1} \right)$$

- Which is why we are interested in the norm of G.
- These types of iterative solvers (and better versions) are of particular interest when
 - -A is sparse and has large bandwidth or
 - Formation of A is much more expensive than evaluation of matrix-vector products of the form $\mathbf{w} = A\mathbf{x}_{k-1}$.
- \bullet Of course, we don't need to save the \mathbf{x}_k s. We simply overwrite \mathbf{x} until we converge.

Condition Number

 Condition number of square nonsingular matrix A is defined by

$$\operatorname{cond}(\boldsymbol{A}) = \|\boldsymbol{A}\| \cdot \|\boldsymbol{A}^{-1}\|$$

- By convention, $cond(A) = \infty$ if A is singular
- Since

$$\|A\| \cdot \|A^{-1}\| = \left(\max_{x \neq 0} \frac{\|Ax\|}{\|x\|}\right) \cdot \left(\min_{x \neq 0} \frac{\|Ax\|}{\|x\|}\right)^{-1}$$

condition number measures ratio of maximum stretching to maximum shrinking matrix does to any nonzero vectors

ullet Large $\operatorname{cond}(\boldsymbol{A})$ means \boldsymbol{A} is nearly singular

Condition Number Examples

$$A_1 = \begin{bmatrix} 0.87 & 0.5 \\ -0.5 & 0.87 \end{bmatrix}, \text{ cond}_2(A_1) = 1$$
 $A_2 = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}, \text{ cond}_2(A_2) = 4$

$$\mathbf{A}_2 = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}, \quad \operatorname{cond}_2(\mathbf{A}_2) = 4$$

$$A_3 = \begin{bmatrix} 1.73 & 0.25 \\ -1 & 0.43 \end{bmatrix}, \text{ cond}_2(A_3) = 4$$

$$A_3 = \begin{bmatrix} 1.73 & 0.25 \\ -1 & 0.43 \end{bmatrix}$$
, $\operatorname{cond}_2(A_3) = 4$ $A_4 = \begin{bmatrix} 1.52 & 0.91 \\ 0.47 & 0.94 \end{bmatrix}$, $\operatorname{cond}_2(A_4) = 4$

Properties of Condition Number

- For any matrix A, $cond(A) \ge 1$
- For identity matrix, $cond(\mathbf{I}) = 1$
- For any matrix A and scalar γ , $\operatorname{cond}(\gamma A) = \operatorname{cond}(A)$
- For any diagonal matrix $m{D} = \mathrm{diag}(d_i)$, $\mathrm{cond}(m{D}) = \frac{\max |d_i|}{\min |d_i|}$

Computing Condition Number

- Definition of condition number involves matrix inverse, so it is nontrivial to compute
- Computing condition number from definition would require much more work than computing solution whose accuracy is to be assessed
- In practice, condition number is estimated inexpensively as byproduct of solution process
- Matrix norm ||A|| is easily computed as maximum absolute column sum (or row sum, depending on norm used)
- Estimating $\|A^{-1}\|$ at low cost is more challenging

Computing Condition Number, continued

• From properties of norms, if Az = y, then

$$\frac{\|oldsymbol{z}\|}{\|oldsymbol{y}\|} \leq \|oldsymbol{A}^{-1}\|$$

and bound is achieved for optimally chosen y

- Efficient condition estimators heuristically pick y with large ratio ||z||/||y||, yielding good estimate for $||A^{-1}||$
- Good software packages for linear systems provide efficient and reliable condition estimator

Error Bounds

- Condition number yields error bound for computed solution to linear system
- Let x be solution to Ax = b, and let \hat{x} be solution to $A\hat{x} = b + \Delta b$
- If $\Delta x = \hat{x} x$, then

$$b + \Delta b = A(\hat{x}) = A(x + \Delta x) = Ax + A\Delta x$$

which leads to bound

$$\frac{\|\Delta \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\Delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|}$$

for possible relative change in solution x due to relative change in right-hand side b

Condition Number and Relative Error: Ax = b.

• Want to solve $A\mathbf{x} = \mathbf{b}$, but computed rhs is:

$$\mathbf{b'} = \mathbf{b} + \Delta \mathbf{b},$$

where we anticpate

$$\frac{||\Delta \mathbf{b}||}{||\mathbf{b}||} \approx \leq \epsilon_M.$$

• Net result is we end up solving $A\mathbf{x}' = \mathbf{b}'$ and want to know how large is the relative error, $\mathbf{x}' = \mathbf{x} + \Delta \mathbf{x}$,

$$\frac{||\Delta \mathbf{x}||}{||\mathbf{x}||}?$$

• Since $A\mathbf{x}' = \mathbf{b}'$ and (by definition) $A\mathbf{x} = \mathbf{b}$, we have:

$$||\Delta \mathbf{x}|| \leq ||A^{-1}|| ||\Delta \mathbf{b}||$$

$$||\mathbf{b}|| \leq ||A|| ||\mathbf{x}||$$

$$\frac{1}{||\mathbf{x}||} \leq ||A|| \frac{1}{||\mathbf{b}||}$$

$$\frac{\Delta \mathbf{x}}{||\mathbf{x}||} \leq ||A|| \frac{\Delta \mathbf{x}}{||\mathbf{b}||}$$

$$\leq ||A|| ||A^{-1}|| \frac{\Delta \mathbf{b}}{||\mathbf{b}||}$$

$$= \operatorname{cond}(A) \frac{\Delta \mathbf{b}}{||\mathbf{b}||}.$$

• Key point: If $\operatorname{cond}(A)=10^k$, then expected relative error is $\approx 10^k \epsilon_M$, meaning that you will lose k digits (of 16, if $\epsilon_M \approx 10^{-16}$.

Illustration of Impact of cond(A)

```
%% Check the error in solving Au=f vs eps*cond(A).
%% Test problem is finite difference solution to -u" = f
%% on [0,1] with u(0)=u(1)=0.

for k=2:20; n = (2^k)-1; h=1/(n+1);

e = ones(n,1);
A = spdiags([-e 2*e -e],-1:1, n,n)/(h*h);
x=1:n; x=h*x';
ue=1+sin(pi*(8*x.*x));

f=A*ue;
u=A\f;
hk(k)=h; ck(k)=cond(A);
ek(k)=max(abs(u-ue))/max(ue);
end;
loglog(hk,ek,'r-',hk,eps*ck,'b-');
axis square
```

Here, we see that ϵ_M * cond(A) bounds the error in the solution to Au=f, as expected.

Error Bounds, continued

• Similar result holds for relative change in matrix: if $(A + E)\hat{x} = b$, then

$$\frac{\|\Delta \boldsymbol{x}\|}{\|\hat{\boldsymbol{x}}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|}$$

 If input data are accurate to machine precision, then bound for relative error in solution x becomes

$$\frac{\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A}) \, \epsilon_{\mathsf{mach}}$$

• Computed solution loses about $\log_{10}(\operatorname{cond}(\boldsymbol{A}))$ decimal digits of accuracy relative to accuracy of input Example

Error Bounds – Illustration

 In two dimensions, uncertainty in intersection point of two lines depends on whether lines are nearly parallel

A Nearly Singular Example

- Clearly, as $\theta \longrightarrow 0$ the matrix becomes singular.
- Can show that

cond
$$= \sqrt{\frac{1+|c|}{1-|c|}}$$

 $\approx \frac{2}{\theta}$

for small θ (by Taylor series!) $matlab\ demo.$

Matlab Demo cr2.m

This example plots cond(A) as a function of θ , as well as the estimates from the preceding slide.

- The computed value of cond(A) given by matlab exactly matches [$(1+|\cos\theta|) / (1-|\cos\theta|)$]^{1/2}
- The more interesting result is $cond(A) \sim 2 / \theta$, which is very accurate for small angles.

```
%% Note - eigenvalues of A'*A are evals of C=A'*A =
୫ ୫
ક ક
       1 c
8 8
       c 1
8 8
%% (1-lam)*(1-lam) - c^2, which is z^2 - c^2 with roots
88
୫ ୫
    z=c and z=-c
8 8
    1-lam = c --> lam = 1 - c
8 8
୫ ୫
    1-lam = -c --> lam = 1+c
ક ક
8 8
    K2 = 1+c / 1 - c
8 8
8 8
       \sim 2 / (1/2 theta^2) for small theta \sim 4 / theta^2
୫ ୫
8 8
     Therefore:
                    K(A) = sqrt(K2) \sim 2/theta
୫ ୫
format compact
jj=0; for j=.01:.01:(2*pi); cj=cos(j);sj=sin(j); jj=jj+1;
    R=[ ci -si ; si ci ];
    a1 = [1; 0]; a2 = R*a1; A = [a1 a2];
    C(jj) = cond(A);
    t(jj)=j; aj = abs(cj); z(jj)=sqrt((1+aj)/(1-aj));
plot(t,C,'r-',t,z,'k-.',t,2./abs(t),'g-','LineWidth',3);
axis([0 2*pi 0 40]);text(pi,2,'2/\theta','FontSize',18) axis square;
xlabel('\theta','FontSize',18);ylabel('Cond(A)','FontSize',20)
title('Cond. Number: Nearly Parallel Unit Columns', 'FontSize', 18)
```


Error Bounds – Caveats

- Normwise analysis bounds relative error in largest components of solution; relative error in smaller components can be much larger
 - Componentwise error bounds can be obtained, but somewhat more complicated
- Conditioning of system is affected by relative scaling of rows or columns
 - Ill-conditioning can result from poor scaling as well as near singularity
 - Rescaling can help the former, but not the latter

Residual

• Residual vector of approximate solution \hat{x} to linear system Ax = b is defined by

$$r = b - A\hat{x}$$

- In theory, if A is nonsingular, then $\|\hat{x} x\| = 0$ if, and only if, $\|r\| = 0$, but they are not necessarily small simultaneously
- Since

$$\frac{\|\Delta \boldsymbol{x}\|}{\|\hat{\boldsymbol{x}}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\| \cdot \|\hat{\boldsymbol{x}}\|}$$

small relative residual implies small relative error in approximate solution only if A is well-conditioned

Residual, continued

• If computed solution \hat{x} exactly satisfies

$$(\boldsymbol{A} + \boldsymbol{E})\hat{\boldsymbol{x}} = \boldsymbol{b}$$

then

$$rac{\|oldsymbol{r}\|}{\|oldsymbol{A}\| \; \|\hat{oldsymbol{x}}\|} \leq rac{\|oldsymbol{E}\|}{\|oldsymbol{A}\|}$$

so large *relative residual* implies large backward error in matrix, and algorithm used to compute solution is unstable

- Stable algorithm yields small relative residual regardless of conditioning of nonsingular system
- Small residual is easy to obtain, but does not necessarily imply computed solution is accurate

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Scaling Linear Systems

- In principle, solution to linear system is unaffected by diagonal scaling of matrix and right-hand-side vector
- In practice, scaling affects both conditioning of matrix and selection of pivots in Gaussian elimination, which in turn affect numerical accuracy in finite-precision arithmetic
- It is usually best if all entries (or uncertainties in entries) of matrix have about same size
- Sometimes it may be obvious how to accomplish this by choice of measurement units for variables, but there is no foolproof method for doing so in general
- Scaling can introduce rounding errors if not done carefully

Example: Scaling

Linear system

$$\begin{bmatrix} 1 & 0 \\ 0 & \epsilon \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ \epsilon \end{bmatrix}$$

has condition number $1/\epsilon$, so is ill-conditioned if ϵ is small

- If second row is multiplied by $1/\epsilon$, then system becomes perfectly well-conditioned
- Apparent ill-conditioning was due purely to poor scaling
- In general, it is usually much less obvious how to correct poor scaling

■ Sherman Morrison Formula

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Solving Modified Problems

- If right-hand side of linear system changes but matrix does not, then LU factorization need not be repeated to solve new system
- Only forward- and back-substitution need be repeated for new right-hand side
- This is substantial savings in work, since additional triangular solutions cost only $\mathcal{O}(n^2)$ work, in contrast to $\mathcal{O}(n^3)$ cost of factorization

Sherman-Morrison Formula

- Sometimes refactorization can be avoided even when matrix does change
- Sherman-Morrison formula gives inverse of matrix resulting from rank-one change to matrix whose inverse is already known

$$(A - uv^T)^{-1} = A^{-1} + A^{-1}u(1 - v^TA^{-1}u)^{-1}v^TA^{-1}$$

where u and v are n-vectors

• Evaluation of formula requires $\mathcal{O}(n^2)$ work (for matrix-vector multiplications) rather than $\mathcal{O}(n^3)$ work required for inversion

Rank-One Updating of Solution

• To solve linear system $(A - uv^T)x = b$ with new matrix, use Sherman-Morrison formula to obtain

$$egin{array}{lll} oldsymbol{x} &=& (oldsymbol{A} - oldsymbol{u} oldsymbol{v}^T)^{-1} oldsymbol{b} \ &=& oldsymbol{A}^{-1} oldsymbol{b} + oldsymbol{A}^{-1} oldsymbol{u} (1 - oldsymbol{v}^T oldsymbol{A}^{-1} oldsymbol{u})^{-1} oldsymbol{v}^T oldsymbol{A}^{-1} oldsymbol{b} \ &=& oldsymbol{A}^{-1} oldsymbol{b} + oldsymbol{A}^{-1} oldsymbol{u} (1 - oldsymbol{v}^T oldsymbol{A}^{-1} oldsymbol{u})^{-1} oldsymbol{v}^T oldsymbol{A}^{-1} oldsymbol{b} \end{array}$$

which can be implemented by following steps

- ullet Solve $Aoldsymbol{z}=oldsymbol{u}$ for $oldsymbol{z}$, so $oldsymbol{z}=oldsymbol{A}^{-1}oldsymbol{u}$
- ullet Solve Ay=b for y, so $y=A^{-1}b$
- $\bullet \ \ \mathsf{Compute} \ \boldsymbol{x} = \boldsymbol{y} + ((\boldsymbol{v}^T\boldsymbol{y})/(1-\boldsymbol{v}^T\boldsymbol{z}))\boldsymbol{z}$
- If A is already factored, procedure requires only triangular solutions and inner products, so only $\mathcal{O}(n^2)$ work and no explicit inverses

Example: Rank-One Updating of Solution

Consider rank-one modification

$$\begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$$

(with 3, 2 entry changed) of system whose LU factorization was computed in earlier example Original Matrix

One way to choose update vectors is

noose update vectors is
$$u = \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix} \quad \text{and} \quad v = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

so matrix of modified system is $oldsymbol{A} - oldsymbol{u} oldsymbol{v}^T$

Example, continued

• Using LU factorization of A to solve Az = u and Ay = b,

$$m{z} = egin{bmatrix} -3/2 \\ 1/2 \\ -1/2 \end{bmatrix} \quad ext{and} \quad m{y} = egin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$$

Final step computes updated solution

Q: Under what circumstances could the denominator be zero?
$$x = y + \frac{v^T y}{1 - v^T z} z = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix} + \frac{2}{1 - 1/2} \begin{bmatrix} -3/2 \\ 1/2 \\ -1/2 \end{bmatrix} = \begin{bmatrix} -7 \\ 4 \\ 0 \end{bmatrix}$$

 We have thus computed solution to modified system without factoring modified matrix

Sherman Morrison

- [1] Solve $A\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$: $A \longrightarrow LU \ (O(n^3) \text{ work })$ Solve $L\tilde{\mathbf{y}} = \tilde{\mathbf{b}}$, Solve $U\tilde{\mathbf{x}} = \tilde{\mathbf{y}} \ (O(n^2) \text{ work })$.
- [2] New problem: $(A \mathbf{u}\mathbf{v}^T)\mathbf{x} = \mathbf{b}$. (different \mathbf{x} and \mathbf{b})

Key Idea:

- $(A \mathbf{u}\mathbf{v}^T)\mathbf{x}$ differs from $A\mathbf{x}$ by only a small amount of information.
- Rewrite as: $A\mathbf{x} + \mathbf{u}\gamma = \mathbf{b}$ $\gamma := -\mathbf{v}^T\mathbf{x} \longleftrightarrow \mathbf{v}^T\mathbf{x} + \gamma = 0$

Sherman Morrison

Extended system:

$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

Extended system:

$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

$$\begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix}$$

Extended system:

In matrix form:

$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

$$\begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} A & \mathbf{u} \\ 0 & 1 - \mathbf{v}^T A^{-1} \mathbf{u} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ -\mathbf{v}^T A^{-1} \mathbf{b} \end{pmatrix}$$

Extended system:

In matrix form:

$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

$$\begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} A & \mathbf{u} \\ 0 & 1 - \mathbf{v}^T A^{-1} \mathbf{u} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ -\mathbf{v}^T A^{-1} \mathbf{b} \end{pmatrix}$$

$$\gamma = -\left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}$$

Extended system:

In matrix form:

$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

$$\begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} A & \mathbf{u} \\ 0 & 1 - \mathbf{v}^T A^{-1} \mathbf{u} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ -\mathbf{v}^T A^{-1} \mathbf{b} \end{pmatrix}$$

$$\gamma = -\left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}$$

$$\mathbf{x} = A^{-1} \left(\mathbf{b} - \mathbf{u}\gamma\right) = A^{-1} \left[\mathbf{b} + \mathbf{u} \left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}\right]$$

Extended system:

In matrix form:

$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

$$\begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} A & \mathbf{u} \\ 0 & 1 - \mathbf{v}^T A^{-1} \mathbf{u} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ -\mathbf{v}^T A^{-1} \mathbf{b} \end{pmatrix}$$

$$\gamma = -\left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}$$

$$\mathbf{x} = A^{-1} \left(\mathbf{b} - \mathbf{u}\gamma\right) = A^{-1} \left[\mathbf{b} + \mathbf{u} \left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}\right]$$

$$(A - \mathbf{u}\mathbf{v}^T)^{-1} = A^{-1} + A^{-1}\mathbf{u} (1 - \mathbf{v}^T A^{-1}\mathbf{u})^{-1} \mathbf{v}^T A^{-1}.$$

Sherman Morrison: Potential Singularity

- Consider the modified system: $(A \mathbf{u}\mathbf{v}^T)\mathbf{x} = \mathbf{b}$.
- The solution is

$$\mathbf{x} = (A - \mathbf{u}\mathbf{v}^T)^{-1}\mathbf{b}$$

$$= \left[I + A^{-1}\mathbf{u}\left(1 - \mathbf{v}^T A^{-1}\mathbf{u}\right)^{-1}\mathbf{v}^T A^{-1}\right]A^{-1}\mathbf{b}.$$

- If $1 \mathbf{v}^T A^{-1} \mathbf{u} = 0$, failure.
- Why?

Sherman Morrison: Potential Singularity

• Let $\tilde{A} := (A - \mathbf{u}\mathbf{v}^T)$ and consider,

$$\tilde{A} A^{-1} = (A - \mathbf{u}\mathbf{v}^T) A^{-1}$$

= $(I - \mathbf{u}\mathbf{v}^T A^{-1})$.

• Look at the product $\tilde{A}A^{-1}\mathbf{u}$,

$$\tilde{A} A^{-1} \mathbf{u} = (I - \mathbf{u} \mathbf{v}^T A^{-1}) \mathbf{u}$$

$$= \mathbf{u} - \mathbf{u} \mathbf{v}^T A^{-1} \mathbf{u}.$$

• If $\mathbf{v}^T A^{-1} \mathbf{u} = 1$, then

$$\tilde{A}A^{-1}\mathbf{u} = \mathbf{u} - \mathbf{u} = 0,$$

which means that \tilde{A} is singular since we assume that A^{-1} exists.

• Thus, an unfortunate choice of \mathbf{u} and \mathbf{v} can lead to a singular modified matrix and this singularity is indicated by $\mathbf{v}^T A^{-1} \mathbf{u} = 1$.

Computing $||A||_2$ and cond₂(A).

• Recall: $cond(A) := ||A^{-1}|| \cdot ||A||,$

$$||A|| := \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||}{||\mathbf{x}||},$$

$$||\mathbf{x}||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} = \sqrt{\mathbf{x}^T \mathbf{x}},$$

$$||\mathbf{x}||_2^2 = \mathbf{x}^T \mathbf{x}.$$

• From now on, drop the subscript "2".

$$||\mathbf{x}||^2 = \mathbf{x}^T \mathbf{x}$$

$$||A\mathbf{x}||^2 = (A\mathbf{x})^T (A\mathbf{x}) = \mathbf{x}^T A^T A \mathbf{x}.$$

• Matrix norm:

$$||A||^{2} = \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||^{2}}{||\mathbf{x}||^{2}},$$

$$= \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} A^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}$$

$$= \lambda_{\max} (A^{T} A) =: \text{ spectral radius of } (A^{T} A).$$

- The symmetric positive definite matrix $B := A^T A$ has positive eigenvalues.
- ullet All symmetric matrices B have a complete set of orthonormal eigenvectors satisfying

$$B\mathbf{z}_j = \lambda_j \mathbf{z}_j, \quad \mathbf{z}_i^T \mathbf{z}_j = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$

• Note: If $\lambda_i = \lambda_j$, $i \neq j$, then can have $\mathbf{z}_i^T \mathbf{z}_j \neq 0$, but we can orthogonalize \mathbf{z}_i and \mathbf{z}_j so that $\tilde{\mathbf{z}}_i^T \tilde{\mathbf{z}}_j = 0$ and

$$B\tilde{\mathbf{z}}_i = \lambda_i \tilde{\mathbf{z}}_i \quad \lambda_i = \lambda_j$$
$$B\tilde{\mathbf{z}}_j = \lambda_j \tilde{\mathbf{z}}_j.$$

- Assume eigenvalues are sorted with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.
- For any \mathbf{x} we have: $\mathbf{x} = c_1 \mathbf{z}_1 + c_2 \mathbf{z}_2 + \cdots + c_n \mathbf{z}_n$.
- Let $||\mathbf{x}|| = 1$.

• Want to find
$$\max_{||\mathbf{x}||=1} \frac{\mathbf{x}^T B \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \max_{||\mathbf{x}||=1} \mathbf{x}^T B \mathbf{x}.$$

• Note:
$$\mathbf{x}^T \mathbf{x} = \left(\sum_{i=1}^n c_i \mathbf{z}_i\right)^T \left(\sum_{j=1}^n c_j \mathbf{z}_j\right)$$

$$= \sum_{i=1}^n \sum_{j=1}^n c_i c_j \mathbf{z}_i^T \mathbf{z}_j$$

$$= \sum_{i=1}^n \sum_{j=1}^n c_i c_j \delta_{ij}$$

$$= \sum_{i=1}^{n} c_i^2 = 1.$$

$$\implies c_1^2 = 1 - \sum_{i=2}^n c_i^2.$$

$$\mathbf{x}^T B \mathbf{x} = \left(\sum_{i=1}^n c_i \mathbf{z}_i\right)^T \left(\sum_{j=1}^n c_j B \mathbf{z}_j\right)$$

$$= \left(\sum_{i=1}^n c_i \mathbf{z}_i\right)^T \left(\sum_{j=1}^n c_j \lambda_j \mathbf{z}_j\right)$$

$$= \sum_{i=1}^n \sum_{j=1}^n c_i \lambda_j c_j \mathbf{z}_i^T \mathbf{z}_j$$

$$= \sum_{i=1}^n \sum_{j=1}^n c_i \lambda_j c_j \delta_{ij}$$

$$= \sum_{i=1}^n c_i^2 \lambda_i = c_1^2 \lambda_1 + c_2^2 \lambda_2 + \dots + c_n^2 \lambda_n$$

$$= \lambda_1 \left[c_1^2 + c_2^2 \beta_2 + \dots + c_n^2 \beta_n\right], \quad 0 < \beta_i := \frac{\lambda_i}{\lambda_1} \le 1,$$

$$= \lambda_1 \left[(1 - c_2^2 - \dots - c_n^2) + c_2^2 \beta_2 + \dots + c_n^2 \beta_n\right]$$

$$= \lambda_1 \left[1 - (1 - \beta_2)c_2^2 + (1 - \beta_3)c_3^2 + \dots + (1 - \beta_n)c_n^2\right]$$

$$= \lambda_1 \left[1 - \text{some positive (or zero) numbers}\right].$$

- Expression is maximized when $c_2 = c_3 = \cdots = c_n = 0, \Longrightarrow c_1 = 1.$
- Maximum value $\mathbf{x}^T B \mathbf{x} = \lambda_{\max}(B) = \lambda_1$.
- Similarly, can show min $\mathbf{x}^T B \mathbf{x} = \lambda_{\min}(B) = \lambda_n$.

• So, $||A||^2 = \max_{\lambda} \lambda(A^T A) = \text{spectral radius of } A^T A$.

• Now,
$$||A^{-1}||^2 = \max_{\mathbf{x} \neq 0} \frac{||A^{-1}\mathbf{x}||^2}{||\mathbf{x}||^2}.$$

• Let $\mathbf{x} = A\mathbf{y}$:

$$||A^{-1}||^{2} = \max_{\mathbf{y} \neq 0} \frac{||A^{-1}A\mathbf{y}||^{2}}{||A\mathbf{y}||^{2}} = \max_{\mathbf{y} \neq 0} \frac{||\mathbf{y}||^{2}}{||A\mathbf{y}||^{2}} = \left(\min_{\mathbf{y} \neq 0} \frac{||A\mathbf{y}||^{2}}{||\mathbf{y}||^{2}}\right)^{-1}$$
$$= \frac{1}{\lambda_{\min}(A^{T}A)}.$$

• So, $\operatorname{cond}_2(A) = ||A^{-1}|| \cdot ||A||$,

$$\operatorname{cond}_2(A) = \sqrt{\frac{\lambda_{\max}(A^T A)}{\lambda_{\min}(A^T A)}}.$$

Special Types of Linear Systems

- Work and storage can often be saved in solving linear system if matrix has special properties
- Examples include
 - Symmetric: $A = A^T$, $a_{ij} = a_{ji}$ for all i, j
 - Positive definite: $x^T A x > 0$ for all $x \neq 0$
 - Band: $a_{ij} = 0$ for all $|i j| > \beta$, where β is bandwidth of A
 - Sparse: most entries of A are zero

Symmetric Positive Definite (SPD) Matrices

- Very common in optimization and physical processes
- Easiest example:
 - \square If B is invertible, then A := B^TB is SPD.
- \square SPD systems of the form A $\underline{x} = \underline{b}$ can be solved using
 - \Box (stable) Cholesky factorization $A = LL^{T_i}$ or
 - □ iteratively with the most robust iterative solver, conjugate gradient iteration (generally with preconditioning, known as preconditioned conjugate gradients, PCG).

Cholesky Factorization and SPD Matrices.

- A is SPD: $A = A^T$ and $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$.
- Seek a symmetric factorization $A = \tilde{L}\tilde{L}^T$ (not LU).
 - -L not lower triangular but not unit lower triangular.
 - That is, Lt_{ii} not necessarily 1.
- Alternatively, seek factorization $A = LDL^T$, where L is unit lower triangular and D is diagonal.

- Start with $LDL^T = A$.
- Clearly, LU = A with $U = DL^T$.
 - Follows from uniqueness of LU factorization.
 - D is a row scaling of L^T and thus $D_{ii} = U_{ii}$.
 - A property of SPD matrices is that all pivots are positive.
 - (Another property is that you do not need to pivot.)

• Consider standard update step:

$$a_{ij} = a_{ij} - \frac{a_{ik} a_{kj}}{a_{kk}}$$
$$= a_{ij} - \frac{a_{ik} a_{jk}}{a_{kk}}$$

- Usual multiplier column entries are $l_{ik} = a_{ik}/a_{kk}$.
- Usual pivot row entries are $u_{kj} = a_{kj} = a_{jk}$.
- So, if we factor $1/d_{kk} = 1/a_{kk}$ out of U, we have:

$$d_{kk}(a_{kj}/a_{kk}) = d_{kk}l_{kj}$$

$$\longrightarrow U = D(D^{-1}U)$$

$$= DL^{T}.$$

• For Cholesky, we have

$$A = LDL^T = L\sqrt{D}\sqrt{D}L^T = \tilde{L}\tilde{L}^T,$$

with $\tilde{L} = L\sqrt{D}$.

Symmetric Positive Definite Matrices

• If A is symmetric and positive definite, then LU factorization can be arranged so that $U = L^T$, which gives Cholesky factorization

$$oldsymbol{A} = oldsymbol{L} oldsymbol{L}^T$$

where L is lower triangular with positive diagonal entries

- Algorithm for computing it can be derived by equating corresponding entries of \boldsymbol{A} and $\boldsymbol{L}\boldsymbol{L}^T$
- In 2×2 case, for example,

$$\begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} \\ 0 & l_{22} \end{bmatrix}$$

implies

$$l_{11} = \sqrt{a_{11}}, \quad l_{21} = a_{21}/l_{11}, \quad l_{22} = \sqrt{a_{22} - l_{21}^2}$$

Cholesky Factorization (Text)

```
Algorithm 2.7 Cholesky Factorization
    for k = 1 to n
                                                { loop over columns }
        a_{kk} = \sqrt{a_{kk}}
        for i = k + 1 to n
            a_{ik} = a_{ik}/a_{kk}
                                                { scale current column }
        end
        for j = k + 1 to n
                                                { from each remaining column,
            for i = j to n
                                                    subtract multiple
                                                    of current column }
                a_{ij} = a_{ij} - a_{ik} \cdot a_{jk}
            end
        end
   end
```

After a row scaling, this is just standard LU decomposition, exploiting symmetry in the LU factors and A. ($U=L^T$)

Cholesky Factorization

• One way to write resulting general algorithm, in which Cholesky factor L overwrites original matrix A, is

```
for j=1 to n

for k=1 to j-1

for i=j to n

a_{ij}=a_{ij}-a_{ik}\cdot a_{jk}

end

end

a_{jj}=\sqrt{a_{jj}}

for k=j+1 to n

a_{kj}=a_{kj}/a_{jj}

end

end
```


Cholesky Factorization, continued

- Features of Cholesky algorithm for symmetric positive definite matrices
 - All n square roots are of positive numbers, so algorithm is well defined
 - No pivoting is required to maintain numerical stability
 - Only lower triangle of A is accessed, and hence upper triangular portion need not be stored
 - Only $n^3/6$ multiplications and similar number of additions are required
- Thus, Cholesky factorization requires only about half work and half storage compared with LU factorization of general matrix by Gaussian elimination, and also avoids need for pivoting

Linear Algebra Very Short Summary

Main points:

- Conditioning of matrix cond(A) bounds our expected accuracy.
 - \blacksquare e.g., if cond(A) ~ 10⁵ we expect at most 11 significant digits in \underline{x} .
 - Why?
 - We start with IEEE double precision 16 digits. We lose 5 because condition (A) $\sim 10^5$, so we have 11 = 16-5.
- □ Stable algorithm (i.e., pivoting) important to realizing this bound.
 - Some systems don't need pivoting (e.g., SPD, diagonally dominant)
 - Unstable algorithms can sometimes be rescued with iterative refinement.
- Costs:
 - □ Full matrix \rightarrow O(n²) storage, O(n³) work (wall-clock time)
 - Sparse or banded matrix, substantially less.

- The following slides present the book's derivation of the LU factorization process.
- ☐ I'll highlight a few of them that show the equivalence between the outer product approach and the elementary elimination matrix approach.

Example: Triangular Linear System

$$\begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix}$$

- Using back-substitution for this upper triangular system, last equation, $4x_3 = 8$, is solved directly to obtain $x_3 = 2$
- Next, x_3 is substituted into second equation to obtain $x_2=2$
- Finally, both x_3 and x_2 are substituted into first equation to obtain $x_1 = -1$

Elimination

- To transform general linear system into triangular form, we need to replace selected nonzero entries of matrix by zeros
- This can be accomplished by taking linear combinations of rows
- Consider 2-vector $\boldsymbol{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$
- If $a_1 \neq 0$, then

$$\begin{bmatrix} 1 & 0 \\ -a_2/a_1 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ 0 \end{bmatrix}$$

Elementary Elimination Matrices

• More generally, we can annihilate *all* entries below kth position in n-vector a by transformation

$$m{M}_{k}m{a} = egin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \ dots & \ddots & dots & dots & \ddots & dots \ 0 & \cdots & 1 & 0 & \cdots & 0 \ 0 & \cdots & -m_{k+1} & 1 & \cdots & 0 \ dots & \ddots & dots & dots & \ddots & dots \ 0 & \cdots & -m_{n} & 0 & \cdots & 1 \end{bmatrix} egin{bmatrix} a_{1} \ dots \ a_{k} \ a_{k+1} \ dots \ a_{n} \end{bmatrix} = egin{bmatrix} a_{1} \ dots \ a_{k} \ 0 \ dots \ a_{n} \end{bmatrix}$$

where
$$m_i = a_i/a_k$$
, $i = k+1, \ldots, n$

• Divisor a_k , called *pivot*, must be nonzero

Elementary Elimination Matrices, continued

- Matrix M_k , called *elementary elimination matrix*, adds multiple of row k to each subsequent row, with *multipliers* m_i chosen so that result is zero
- ullet M_k is unit lower triangular and nonsingular
- $M_k = I m_k e_k^T$, where $m_k = [0, \dots, 0, m_{k+1}, \dots, m_n]^T$ and e_k is kth column of identity matrix
- $m{M}_k^{-1} = m{I} + m{m}_k m{e}_k^T$, which means $m{M}_k^{-1} = : m{L}_k$ is same as $m{M}_k$ except signs of multipliers are reversed

Elementary Elimination Matrices, continued

• If M_j , j > k, is another elementary elimination matrix, with vector of multipliers m_j , then

$$egin{array}{lll} oldsymbol{M}_k oldsymbol{M}_j &=& oldsymbol{I} - oldsymbol{m}_k oldsymbol{e}_k^T - oldsymbol{m}_j oldsymbol{e}_j^T + oldsymbol{m}_k oldsymbol{e}_k^T oldsymbol{m}_j oldsymbol{e}_j^T \ &=& oldsymbol{I} - oldsymbol{m}_k oldsymbol{e}_k^T - oldsymbol{m}_j oldsymbol{e}_j^T \ &=& oldsymbol{I} - oldsymbol{m}_k oldsymbol{e}_k^T - oldsymbol{m}_j oldsymbol{e}_j^T \end{array}$$

which means product is essentially "union," and similarly for product of inverses, $L_k L_j$

Comment on update step and $\underline{m}_k \underline{e}^T_k$

- □ Recall, $\underline{\mathbf{v}} = \mathbf{C} \ \underline{\mathbf{w}} \in \text{span}\{\mathbf{C}\}.$
- Arr Arr
- ☐ If $C = \underline{c}$, i.e., C is a column vector and therefore of rank 1, then V is in span{C} and is of rank 1.
- ☐ All columns of V are multiples of <u>c</u>.
- ☐ Thus, $W = \underline{c} \underline{r}^T$ is an n x n matrix of rank 1.
 - All columns are multiples of the first column and
 - All rows are multiples of the first row.

Elementary Elimination Matrices, continued

- Matrix M_k , called *elementary elimination matrix*, adds multiple of row k to each subsequent row, with *multipliers* m_i chosen so that result is zero
- ullet M_k is unit lower triangular and nonsingular
- $M_k = I m_k e_k^T$, where $m_k = [0, \dots, 0, m_{k+1}, \dots, m_n]^T$ and e_k is kth column of identity matrix
- $m{M}_k^{-1} = m{I} + m{m}_k m{e}_k^T$, which means $m{M}_k^{-1} = : m{L}_k$ is same as $m{M}_k$ except signs of multipliers are reversed

Example: Elementary Elimination Matrices

• For
$$a = \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix}$$
,

$$oldsymbol{M}_1oldsymbol{a} = egin{bmatrix} 1 & 0 & 0 \ -2 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix} egin{bmatrix} 2 \ 4 \ -2 \end{bmatrix} = egin{bmatrix} 2 \ 0 \ 0 \end{bmatrix}$$

and

$$m{M}_2m{a} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1/2 & 1 \end{bmatrix} egin{bmatrix} 2 \ 4 \ -2 \end{bmatrix} = egin{bmatrix} 2 \ 4 \ 0 \end{bmatrix}$$

Note that

$$m{L}_1 = m{M}_1^{-1} = egin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \quad m{L}_2 = m{M}_2^{-1} = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1/2 & 1 \end{bmatrix}$$

and

$$m{M}_1m{M}_2 = egin{bmatrix} 1 & 0 & 0 \ -2 & 1 & 0 \ 1 & 1/2 & 1 \end{bmatrix}, \quad m{L}_1m{L}_2 = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & -1/2 & 1 \end{bmatrix}$$

Gaussian Elimination

- To reduce general linear system Ax = b to upper triangular form, first choose M_1 , with a_{11} as pivot, to annihilate first column of A below first row
 - System becomes $M_1Ax = M_1b$, but solution is unchanged
- Next choose M_2 , using a_{22} as pivot, to annihilate second column of M_1A below second row
 - System becomes $M_2M_1Ax = M_2M_1b$, but solution is still unchanged
- Process continues for each successive column until all subdiagonal entries have been zeroed

Gaussian Elimination

- To reduce general linear system Ax = b to upper triangular form, first choose M_1 , with a_{11} as pivot, to annihilate first column of A below first row
 - System becomes $M_1Ax = M_1b$, but solution is unchanged
- Next choose M_2 , using a_{22} as pivot, to annihilate second column of M_1A below second row
 - System becomes $M_2M_1Ax = M_2M_1b$, but solution is still unchanged
- Technically, this should be a'_{22} , the 2-2 entry in $A' := M_1A$. Thus, we don't know all the pivots in advance.

Gaussian Elimination, continued

Resulting upper triangular linear system

$$egin{array}{lcl} oldsymbol{M}_{n-1} \cdots oldsymbol{M}_1 oldsymbol{A} oldsymbol{x} &= oldsymbol{M} oldsymbol{b} \ oldsymbol{M} oldsymbol{A} oldsymbol{x} &= oldsymbol{M} oldsymbol{b} \end{array}$$

can be solved by back-substitution to obtain solution to original linear system $m{A}m{x} = m{b}$

Process just described is called Gaussian elimination

LU Factorization

• Product $L_k L_j$ is unit lower triangular if k < j, so

$$m{L} = m{M}^{-1} = m{M}_1^{-1} \cdots m{M}_{n-1}^{-1} = m{L}_1 \cdots m{L}_{n-1}$$

is unit lower triangular

- By design, U = MA is upper triangular
- So we have

$$A = LU$$

with $m{L}$ unit lower triangular and $m{U}$ upper triangular

 Thus, Gaussian elimination produces LU factorization of matrix into triangular factors

LU Factorization, continued

- Having obtained LU factorization, Ax = b becomes LUx = b, and can be solved by forward-substitution in lower triangular system Ly = b, followed by back-substitution in upper triangular system Ux = y
- ullet Note that $oldsymbol{y} = oldsymbol{M} oldsymbol{b}$ is same as transformed right-hand side in Gaussian elimination
- Gaussian elimination and LU factorization are two ways of expressing same solution process

Example: Gaussian Elimination

Use Gaussian elimination to solve linear system

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \mathbf{b}$$

ullet To annihilate subdiagonal entries of first column of A,

$$\mathbf{M}_{1}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix},$$

$$m{M}_1m{b} = egin{bmatrix} 1 & 0 & 0 \ -2 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix} egin{bmatrix} 2 \ 8 \ 10 \end{bmatrix} = egin{bmatrix} 2 \ 4 \ 12 \end{bmatrix}$$

• To annihilate subdiagonal entry of second column of M_1A ,

$$M_2 M_1 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} = U,$$

$$oldsymbol{M}_2 oldsymbol{M}_1 oldsymbol{b} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & -1 & 1 \end{bmatrix} egin{bmatrix} 2 \ 4 \ 12 \end{bmatrix} = egin{bmatrix} 2 \ 4 \ 8 \end{bmatrix} = oldsymbol{M} oldsymbol{b}$$

 We have reduced original system to equivalent upper triangular system

$$egin{aligned} oldsymbol{U}oldsymbol{x} &= egin{bmatrix} 2 & 4 & -2 \ 0 & 1 & 1 \ 0 & 0 & 4 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = egin{bmatrix} 2 \ 4 \ 8 \end{bmatrix} = oldsymbol{M}oldsymbol{b} \end{aligned}$$

which can now be solved by back-substitution to obtain

$$m{x} = egin{bmatrix} -1 \ 2 \ 2 \end{bmatrix}$$

To write out LU factorization explicitly,

$$m{L}_1m{L}_2 = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1 & 1 \end{bmatrix} = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & 1 & 1 \end{bmatrix} = m{L}$$

so that

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} = \mathbf{L}\mathbf{U}$$

