■ Sherman Morrison Formula

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Solving Modified Problems

- If right-hand side of linear system changes but matrix does not, then LU factorization need not be repeated to solve new system
- Only forward- and back-substitution need be repeated for new right-hand side
- This is substantial savings in work, since additional triangular solutions cost only $\mathcal{O}(n^2)$ work, in contrast to $\mathcal{O}(n^3)$ cost of factorization

Sherman-Morrison Formula

- Sometimes refactorization can be avoided even when matrix does change
- Sherman-Morrison formula gives inverse of matrix resulting from rank-one change to matrix whose inverse is already known

$$(A - uv^T)^{-1} = A^{-1} + A^{-1}u(1 - v^TA^{-1}u)^{-1}v^TA^{-1}$$

where u and v are n-vectors

• Evaluation of formula requires $\mathcal{O}(n^2)$ work (for matrix-vector multiplications) rather than $\mathcal{O}(n^3)$ work required for inversion

Rank-One Updating of Solution

• To solve linear system $(A - uv^T)x = b$ with new matrix, use Sherman-Morrison formula to obtain

$$egin{array}{lll} oldsymbol{x} &=& (oldsymbol{A} - oldsymbol{u} oldsymbol{v}^T)^{-1} oldsymbol{b} \ &=& oldsymbol{A}^{-1} oldsymbol{b} + oldsymbol{A}^{-1} oldsymbol{u} (1 - oldsymbol{v}^T oldsymbol{A}^{-1} oldsymbol{u})^{-1} oldsymbol{v}^T oldsymbol{A}^{-1} oldsymbol{b} \ &=& oldsymbol{A}^{-1} oldsymbol{b} + oldsymbol{A}^{-1} oldsymbol{u} (1 - oldsymbol{v}^T oldsymbol{A}^{-1} oldsymbol{u})^{-1} oldsymbol{v}^T oldsymbol{A}^{-1} oldsymbol{b} \end{array}$$

which can be implemented by following steps

- ullet Solve Az=u for z, so $z=A^{-1}u$
- ullet Solve Ay=b for y, so $y=A^{-1}b$
- $\bullet \ \ \mathsf{Compute} \ \boldsymbol{x} = \boldsymbol{y} + ((\boldsymbol{v}^T\boldsymbol{y})/(1-\boldsymbol{v}^T\boldsymbol{z}))\boldsymbol{z}$
- If A is already factored, procedure requires only triangular solutions and inner products, so only $\mathcal{O}(n^2)$ work and no explicit inverses

Triangular Systems Gaussian Elimination **Updating Solutions** Improving Accuracy

Example: Rank-One Updating of Solution

Consider rank-one modification

$$\begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$$

(with 3, 2 entry changed) of system whose LU factorization was computed in earlier example Original Matrix

One way to choose update vectors is

noose update vectors is
$$u = \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix} \quad \text{and} \quad v = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

so matrix of modified system is $oldsymbol{A} - oldsymbol{u} oldsymbol{v}^T$

Example, continued

• Using LU factorization of A to solve Az = u and Ay = b,

$$m{z} = egin{bmatrix} -3/2 \\ 1/2 \\ -1/2 \end{bmatrix} \quad ext{and} \quad m{y} = egin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$$

Final step computes updated solution

Q: Under what circumstances could the denominator be zero?
$$x = y + \frac{v^T y}{1 - v^T z} z = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix} + \frac{2}{1 - 1/2} \begin{bmatrix} -3/2 \\ 1/2 \\ -1/2 \end{bmatrix} = \begin{bmatrix} -7 \\ 4 \\ 0 \end{bmatrix}$$

 We have thus computed solution to modified system without factoring modified matrix

- [1] Solve $A\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$: $A \longrightarrow LU \ (O(n^3) \text{ work })$ Solve $L\tilde{\mathbf{y}} = \tilde{\mathbf{b}}$, Solve $U\tilde{\mathbf{x}} = \tilde{\mathbf{y}} \ (O(n^2) \text{ work })$.
- [2] New problem: $(A \mathbf{u}\mathbf{v}^T)\mathbf{x} = \mathbf{b}$. (different \mathbf{x} and \mathbf{b})

Key Idea:

- $(A \mathbf{u}\mathbf{v}^T)\mathbf{x}$ differs from $A\mathbf{x}$ by only a small amount of information.
- Rewrite as: $A\mathbf{x} + \mathbf{u}\gamma = \mathbf{b}$ $\gamma := -\mathbf{v}^T\mathbf{x} \longleftrightarrow \mathbf{v}^T\mathbf{x} + \gamma = 0$

Extended system:

$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

Extended system:

$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

$$\begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix}$$

Extended system:

In matrix form:

$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

$$\begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} A & \mathbf{u} \\ 0 & 1 - \mathbf{v}^T A^{-1} \mathbf{u} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ -\mathbf{v}^T A^{-1} \mathbf{b} \end{pmatrix}$$

Extended system:

In matrix form:

$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

$$\begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} A & \mathbf{u} \\ 0 & 1 - \mathbf{v}^T A^{-1} \mathbf{u} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ -\mathbf{v}^T A^{-1} \mathbf{b} \end{pmatrix}$$

$$\gamma = -\left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}$$

Extended system:

In matrix form:

$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

$$\begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} A & \mathbf{u} \\ 0 & 1 - \mathbf{v}^T A^{-1} \mathbf{u} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ -\mathbf{v}^T A^{-1} \mathbf{b} \end{pmatrix}$$

$$\gamma = -\left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}$$

$$\mathbf{x} = A^{-1} \left(\mathbf{b} - \mathbf{u}\gamma\right) = A^{-1} \left[\mathbf{b} + \mathbf{u} \left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}\right]$$

Extended system:

In matrix form:

$$A\mathbf{x} + \gamma \mathbf{u} = \mathbf{b}$$
$$\mathbf{v}^T \mathbf{x} + \gamma = 0$$

$$\begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} A & \mathbf{u} \\ 0 & 1 - \mathbf{v}^T A^{-1} \mathbf{u} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ -\mathbf{v}^T A^{-1} \mathbf{b} \end{pmatrix}$$

$$\gamma = -\left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}$$

$$\mathbf{x} = A^{-1} \left(\mathbf{b} - \mathbf{u}\gamma\right) = A^{-1} \left[\mathbf{b} + \mathbf{u} \left(1 - \mathbf{v}^T A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^T A^{-1} \mathbf{b}\right]$$

$$(A - \mathbf{u}\mathbf{v}^T)^{-1} = A^{-1} + A^{-1}\mathbf{u} (1 - \mathbf{v}^T A^{-1}\mathbf{u})^{-1} \mathbf{v}^T A^{-1}.$$

Sherman Morrison: Potential Singularity

- Consider the modified system: $(A \mathbf{u}\mathbf{v}^T)\mathbf{x} = \mathbf{b}$.
- The solution is

$$\mathbf{x} = (A - \mathbf{u}\mathbf{v}^T)^{-1}\mathbf{b}$$

$$= \left[I + A^{-1}\mathbf{u}\left(1 - \mathbf{v}^T A^{-1}\mathbf{u}\right)^{-1}\mathbf{v}^T A^{-1}\right]A^{-1}\mathbf{b}.$$

- If $1 \mathbf{v}^T A^{-1} \mathbf{u} = 0$, failure.
- Why?

Sherman Morrison: Potential Singularity

• Let $\tilde{A} := (A - \mathbf{u}\mathbf{v}^T)$ and consider,

$$\tilde{A} A^{-1} = (A - \mathbf{u}\mathbf{v}^T) A^{-1}$$

= $(I - \mathbf{u}\mathbf{v}^T A^{-1})$.

• Look at the product $\tilde{A}A^{-1}\mathbf{u}$,

$$\tilde{A} A^{-1} \mathbf{u} = (I - \mathbf{u} \mathbf{v}^T A^{-1}) \mathbf{u}$$

$$= \mathbf{u} - \mathbf{u} \mathbf{v}^T A^{-1} \mathbf{u}.$$

• If $\mathbf{v}^T A^{-1} \mathbf{u} = 1$, then

$$\tilde{A}A^{-1}\mathbf{u} = \mathbf{u} - \mathbf{u} = 0,$$

which means that \tilde{A} is singular since we assume that A^{-1} exists.

• Thus, an unfortunate choice of \mathbf{u} and \mathbf{v} can lead to a singular modified matrix and this singularity is indicated by $\mathbf{v}^T A^{-1} \mathbf{u} = 1$.

Tensor Product Matrics

The tensor- (or Kronecker-) product of matrices A and B is denoted as

$$C = A \otimes B$$

and is defined as the block matrix having entries

$$C := \begin{pmatrix} a_{11}B & a_{12}B & \cdots & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & \cdots & a_{2n}B \\ \vdots & \vdots & & & \vdots \\ a_{m1}B & a_{m2}B & \cdots & \cdots & a_{mn}B \end{pmatrix}.$$

Tensor-Product Matrices

- Tensor-product forms arise in many applications, including
 - □ Density Functional Theory (DFT) in computational chemistry (e.g., 7-dimensional tensors)
 - Partial differential equations
 - Image processing (e.g., multidimensional FFTs)
 - Machine learning (ML)
- ☐ Their importance in ML/AI applications is such that software developers and computer architects are now designing fast tensor-contraction engines to further accelerate tensor-product manipulations.

Tensor-Product Matrices

☐ In Computer Vision, there is even a conference series on this topic.

- Our interest here is to understand how tensor-product forms can yield very rapid direct solvers for systems of the form $A\mathbf{x} = \mathbf{b}$.
- There are two ways in which tensor-product-based matrices for the form $C = A \otimes B$ accelerate computation:
 - 1. They can be used to effect very fast matrix-vector products.
 - 2. They can be used to effect very fast matrix-matrix products.
- To begin, we focus on the matrix-matrix products, which is a bit easier to understand.

Product Rule for Tensor-Product Matrices

- Assume that the matrix pairs (D, A) and (E, B) are dimensioned such that the products DA and EB are well-defined.
- If

$$C := A \otimes B$$
 and $F := D \otimes E$,

then, the matrix product FC is given by

$$FC = (D \otimes E) (A \otimes B)$$

= $DA \otimes EB$.

ullet This result follows from the definition of the Kronecker product, \otimes , and has many important consequences.

Uses of the Product Rule: Inverses

$$(D \otimes E) (A \otimes B) = DA \otimes EB.$$

• If $C := A \otimes B$, then

$$C^{-1} := A^{-1} \otimes B^{-1}.$$

• Specifically,

$$C^{-1}C = (A^{-1} \otimes B^{-1}) (A \otimes B) = A^{-1}A \otimes B^{-1}B$$
$$= I_A \otimes I_B = I,$$

where I_A and I_B are identity matrices equal in size to A and B, repsectively.

ullet Thus, the inverse of C is the tensor-product of two much smaller matrices, A and B.

Uses of the Product Rule: Inverses

• Example:

- Suppose A and B are full $N \times N$ matrices and $C = A \otimes B$ is $n \times n$ with $n = N^2$.
- The LU factorization of C is

$$LU = (L_A \otimes L_B)(U_A \otimes U_B).$$

- What is the cost of computing the tensor product form of LU, rather than LU directly as a function of N?
- What is the ratio (full time over tensor-product time) when N = 100?

The Curse of Dimensionality

- The advantage of the tensor-product representation increases with higher dimensions.
- Suppose A_j is $N \times N$, for $j = 1, \ldots, d$, and

$$C = A_d \otimes A_{d-1} \otimes \cdots \otimes A_1,$$

with inverse

$$C^{-1} = A_d^{-1} \otimes A_{d-1}^{-1} \otimes \cdots \otimes A_1^{-1}.$$

- Tensor-product forms are *critical* for efficient computation in many largedimensional scientific problems.
- Application of the tensor operator, however, will take more work, since we obviously have to touch $n = 10^7$ entries. We'll see in a moment that the cost of application is $\approx 2d \cdot n \cdot n^{\frac{1}{d}} \ll O(n^3)$.

- Consider d=7 and N=10.
 - The number of nonzeros in C (if formed) is N^{14} , which is 800 TB and would cost you about \$10,000 in disk drives.
 - Factorization of the full form will take about 10 minutes on the world's fastest computer in 2021, or about 600 years on my mac.
 - The factorization cost for the tensor product form is ≈ 5000 operations. A blink of the eye on your laptop.
 - Application of C^{-1} in tensor form will require about $2 \cdot 7 \cdot 10^8 \approx 1.4 \times 10^9$ operations, which is less than a second if you sustain > 1 GFLOPS on your computer.
- With the significant reduction of memory references and operations, the cost of application of C^{-1} in the high-rank tensor case is typically dominated by the cost of transfering the right-hand side and solution vectors from and to main memory. That is, the cost scales like $cn = cN^d$, where c is some measure of the inverse memory bandwidth.

Thus, high-rank tensors transform a compute-bound problem to a memory-bound one.

Uses of the Product Rule: Eigenvalues

• Suppose that A is an $N \times N$ matrix with the *similarity transformation* (Chapter 4),

$$A = S\Lambda S^{-1},$$

where $S = [\mathbf{s}_1 \, \mathbf{s}_2 \cdots \mathbf{s}_N]$ is the (full) matrix of eigenvectors of A and $\Lambda = \operatorname{diag}(\lambda_i)$ is the diagonal matrix of corresponding eigenvalues.

That is, $A\mathbf{s}_i = \mathbf{s}_i \lambda_i$.

- Let $T\mathcal{M}T^{-1}$ denote the similarity transformation for B, with eigenvector matrix T and eigenvalue matrix \mathcal{M} .
- Then the similarity transformation for $C = A \otimes B$ is

$$A \otimes B = (S\Lambda S^{-1}) \otimes (T\mathcal{M}T^{-1})$$
$$= (S \otimes T) (\Lambda \otimes \mathcal{M}) (S^{-1} \otimes T^{-1})$$
$$= U\mathcal{N}U^{-1}.$$

 \bullet Thus, we have diagonalized C by diagonalizing two smaller systems A and B.

Fast Matrix-Vector Products

lacksquare Q: What is the cost of Cu, vs. the fast form for $(A \otimes B)u$?

Fast Matrix-Vector Products via Tensor Contraction

- Consider evaluation of $\mathbf{w} = C\mathbf{v} := (A \otimes B)\mathbf{u}$.
- To avoid extra work and storage, we evaluate the product as

$$\mathbf{w} = (A \otimes I)(I \otimes B)\mathbf{u},$$

or

$$\mathbf{v} = (I \otimes B)\mathbf{u},$$

$$\mathbf{w} = (A \otimes I)\mathbf{u}.$$

• Start with $\mathbf{v} = (I \otimes B)\mathbf{u}$.

$ \left(\begin{array}{c} v_1 \\ v_2 \\ \vdots \\ \vdots \\ v_N \end{array} \right)$		B				$\left(\begin{array}{c} u_1 \\ v_2 \\ \vdots \\ \vdots \\ u_N \end{array}\right)$
$\begin{array}{c} v_{1+N} \\ v_{2+N} \\ \vdots \\ \vdots \\ v_{2N} \end{array}$			B			$\begin{array}{c c} u_{1+N} \\ u_{2+N} \\ \vdots \\ \vdots \\ u_{2N} \end{array}$
	=			B		
$\begin{array}{c} \vdots \\ \vdots \\ \vdots \\ \vdots \\ v_n \end{array}$					B	$\begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ u_n \end{bmatrix}$
v		$I \otimes B$				

- In $(I \otimes B)\mathbf{u}$, B is applied M times to vectors of length M.
- We can reshape the vector \mathbf{u} and output vector \mathbf{v} to be $M \times N$ matrices, such that $\mathbf{v} = (I \otimes B)\mathbf{u}$ is computed as a matrix-matrix product:

$$\begin{pmatrix} v_1 & v_{1+M} & v_{\dots} & v_{\dots} & v_{\dots} \\ v_2 & v_{2+M} & v_{\dots} & v_{\dots} & v_{\dots} \\ v_{\dots} & v_{\dots} & v_{\dots} & v_{\dots} & v_{\dots} \\ v_{\dots} & v_{\dots} & v_{\dots} & v_{\dots} & v_{\dots} \\ v_{\dots} & v_{\dots} & v_{\dots} & v_{\dots} & v_{\dots} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & b_{\dots} & b_{\dots} & b_{1M} \\ b_{21} & b_{22} & b_{\dots} & b_{\dots} & b_{2M} \\ b_{\dots} & b_{\dots} & b_{\dots} & b_{\dots} & b_{\dots} \\ b_{\dots} & b_{\dots} & b_{\dots} & b_{\dots} \\ b_{\dots} & b_{\dots} & b_{\dots} & b_{\dots} \\ b_{M1} & b_{M2} & b_{\dots} & b_{\dots} & b_{MM} \end{pmatrix} \begin{pmatrix} u_1 & u_{1+M} & u_{\dots} & u_{\dots} & u_{\dots} \\ u_2 & u_{2+M} & u_{\dots} & u_{\dots} & u_{\dots} \\ u_2 & u_{2+M} & u_{\dots} & u_{\dots} & u_{\dots} \\ u_{\dots} & u_{\dots} & u_{\dots} & u_{\dots} \\ u_{\dots} & u_{\dots} & u_{\dots} & u_{\dots} \\ u_{\dots} & u_{\dots} & u_{\dots} & u_{\dots} \\ u_{M} & u_{2M} & u_{\dots} & u_{\dots} & u_{\dots} \end{pmatrix}$$

- ullet It is convenient to relabel the indices on ${\bf u}$ and ${\bf v}$ to match the contraction indices of the tensor operator.
- Specifically, let $\mathbf{u} = (u_1 \, u_2 \, \dots \, u_n)^T$ and U be the matrix form with entries $U_{ij} = u_{\hat{\imath}}$, for $\hat{\imath} := i + M(j-1)$.
- Then, with the same mapping for $\mathbf{b} \longrightarrow V$, we can write

$$V = BU$$
.

• In index form (convenient for later...)

$$V_{ij} = \sum_{p=1}^{M} B_{ip} U_{pj}.$$

• The next step is to compute $\mathbf{w} = (A \otimes I)\mathbf{v}$:

$\begin{pmatrix} w_{11} \end{pmatrix}$	$\begin{pmatrix} a_{11} \end{pmatrix}$	a_{12}	$a_{\cdot \cdot}$	a_{1N}	$\left(\begin{array}{c}v_{11}\end{array}\right)$		
w_{21}	a_{11}	a_{12}	$a_{}$	a_{1N}	v_{21}		
:	·.	·	·	٠.			
$\left \begin{array}{c}\vdots\\w_{M1}\end{array}\right $			·	·	$\begin{array}{ c c } \vdots \\ v_{M1} \end{array}$		
w_{12}	$-\frac{a_{11}}{a_{21}}$	a_{12} a_{22}	a	a_{1N} a_{2N}	v_{12}		
w_{22}	a_{21}	a_{22} a_{22}	$a_{\cdot \cdot \cdot}$	a_{2N}	v_{22}		
1 1	·.	··	·.	··			
:	· .	·	·	··.	:		
$\left \begin{array}{c} w_{M2} \end{array} \right \hspace{0.1cm} = \hspace{0.1cm}$	=	a_{22}	$a_{}$	a_{2N}	$-\frac{v_{M2}}{-}$		
:	a	a	a	a			
:	$a_{}$	$a_{}$	$a_{}$	$a_{}$			
	· .	·	·	·			
:	·	·	·	·	:		
	$a_{}$	a	$a_{}$	$a_{}$			
$oxed{w_{1N}}$	a_{N1}	a_{N2}	a	a_{NN}	v_{1N}		
w_{2N}	a_{N1}	a_{N2}	$a_{}$	a_{NN}	v_{2N}		
:	·.	·	·	·			
	·	·	·	·			
$\left(\begin{array}{c} w_{MN} \end{array}\right)$	a_{N1}	a_{N2}	$a_{}$	a_{NN}	$\int \int v_{MN} \int$		
$\widetilde{\mathbf{w}}$		$\widetilde{A\otimes I}$					

- Here, the picture is less obvious than for the block-diagonal $(I \otimes B)$ case.
- \bullet To make things simpler, we've enumerated ${\bf v}$ and ${\bf w}$ with the two-index subscript in the preceding slide such that they are already in tensor form.
- With a bit of inspection, it becomes clear that $\mathbf{w} = (A \otimes I)\mathbf{v}$ is given by a contraction that is similar to the preceding one. Namely,

$$W_{ij} = \sum_{q=1}^{M} A_{jq} V_{iq} = \sum_{q=1}^{M} A_{qj}^{T} V_{iq} = \sum_{q=1}^{M} V_{iq} A_{qj}^{T}.$$

- The last form is a proper matrix-matrix product of the form $W = V A^{T}$.
- The complete contraction evaluation, $\mathbf{w} = (A \otimes B)\mathbf{u}$, for 2D (i.e., rank-2) tensors is thus simply,

$$W = B U A^T$$
.

- Contractions for higher-rank tensors take on a similar form.
- For example, a rank-3 contraction $\mathbf{w} = (A \otimes B \otimes C)\mathbf{u}$ is evaluated as

$$w_{ijk} = \sum_{r=1}^{N_A} \sum_{q=1}^{N_B} \sum_{p=1}^{N_C} A_{kr} B_{jq} C_{ip} u_{pqr} = \sum_{r=1}^{N_A} A_{kr} \left[\sum_{q=1}^{N_B} B_{jq} \left(\sum_{p=1}^{N_C} C_{ip} u_{pqr} \right) \right].$$

• The second form on the right implements the fast evaluation,

$$(A \otimes I \otimes I)(I \otimes B \otimes I)(I \otimes I \otimes C)$$
. [See Deville, F., Mund, 2002]

• More generally, for $\mathbf{w} = (A^d \otimes A^{d-1} \otimes \cdots \otimes A^1)\mathbf{u}$, one has

$$w_{i_1 i_2 \cdots i_d} = \sum_{j_d=1}^{N_d} A^d_{i_d j_d} \left[\sum_{j_{d-1}=1}^{N_{d-1}} A^{d-1}_{i_{d-1} j_{d-1}} \left(\cdots \sum_{j_1=1}^{N_1} A^1_{i_1 j_1} u_{j_1 j_2 \cdots j_d} \right) \right].$$

- If $N_1 = N_2 = \cdots = N_d = N$, then the amount of data movement is $N^d + dN^2$ loads for **u** and A^k and N^d stores $(N^d = n)$.
- The number of operations is $2dN^d \cdot N = 2dnN = 2dn^{1+\frac{1}{d}}$, so we see that these schemes are nearly linear in n for large values of d.

Contractions Pictorially

□ 1D:

Contractions Pictorially

 \square 2D: $(A \otimes B) U$

A

U

B

Contractions Pictorially

 \square 3D: $(A \otimes B \otimes C) U$

For d > 2, the amount of data (U) generally dominates the cost of loading the operators. Tensor-based operators are very fast in these cases.

Fast Solvers: Other Systems

Fast Solver Example

• Consider the system $A_{2D} \mathbf{u} = \mathbf{f}$:

,	√ 4 −1	-1	\	$\begin{pmatrix} u_{11} \end{pmatrix}$	f_{11}
	-1 4 -1	-1		u_{21}	$\begin{pmatrix} f_{11} \\ f_{21} \end{pmatrix}$
	-1 $\cdot \cdot \cdot$	·			
	·. ·1	·			
	-1 4	-1		u_{M1}	f_{M1}
	-1	4 -1		$\left \begin{array}{c} \overline{} \\ u_{12} \end{array} \right $	f_{12}
				u_{22}	f_{22}
	-1 ·	-1 4 -1		1 . 1	
	·.	-1			
	•.	1			:
$\frac{1}{h^2}$		-1 4	<u> </u>	$\left \begin{array}{c} u_{M2} \\ \end{array} \right =$	$\left \begin{array}{c} f_{M2} \\ - \end{array} \right $
h^2			-1		
		· · · · · · · · · · · · · · · · · · ·	-1		
		·. · · · · · · · · · · · · · · · · · ·	·		
		·. · · · · · · · · · · · · · · · · · ·	·		
		·.	-1	:	
		-1	4 -1	$\left \begin{array}{c} \overline{} \\ u_{1N} \end{array} \right $	f_{1N}
		-1	$\begin{vmatrix} -1 & 4 & \ddots \end{vmatrix}$	u_{2N}	f_{2N}
		•			
		-:	$\begin{pmatrix} & \ddots & \ddots & -1 \\ & -1 & 4 \end{pmatrix}$	$\left(\begin{array}{c} \cdot \\ u_{MN} \end{array}\right)$	$\left(\begin{array}{c} \cdot \\ f_{MN} \end{array}\right)$
•	\	<u>'</u>	_11	$\underbrace{\widetilde{\mathbf{u}}}'$	\mathcal{L}
		A_{2D}		u	\mathbf{I}

- This system is the 2D analog of the 1D finite-difference approximation to the heat equation.
- That is,

$$-\left[\frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{\Delta x^2} + \frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{\Delta y^2}\right] = f_{ij},$$

approximates the Poisson equation

$$-\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = f(x, y),$$

with u = 0 on the boundary of the domain $\Omega = [0, M\Delta x] \times [0, N\Delta y]$.

- The details of the discretization are not our principal focus at this point.
- Here, we explore fast direct (noniterative) solution methods.

1D Poisson System $0 =: x_0 \quad x_1 \quad x_2 \quad \cdots \qquad x_{j-1} \quad x_j \quad x_{j+1} \quad \cdots \quad x_{n+1} := 1$

Figure 1: Finite difference grid on $\Omega := [0, 1]$.

$$-\frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} = f_j, \qquad j = 1, \dots, n.$$

- This expression approximates the 1D differential equation $-\frac{d^2u}{dx^2} = f(x), u(0) = u(L) = 0.$
- Each equation j relates u_{j-1} , u_j , and u_{j+1} to f_j .
- For this reason, the resulting matrix system is tridiagonal,

$$\underbrace{\frac{1}{h^2} \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & -1 & \ddots & \ddots & \\ & & \ddots & \ddots & -1 \\ & & & -1 & 2 \end{pmatrix}}_{A_x} \underbrace{\begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ \vdots \\ u_n \end{pmatrix}}_{\mathbf{u}} = \underbrace{\begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ \vdots \\ f_n \end{pmatrix}}_{\mathbf{f}}.$$

Properties of A_x

- A_x is *symmetric*, which implies it has real eigenvalues and an orthonormal set of eigenvectors satisfying $A_x \mathbf{s}_j = \lambda_j \mathbf{s}_j$, $\mathbf{s}_j^T \mathbf{s}_i = \delta_{ij}$, where the Kronecker δ_{ij} equals 1 when i = j and 0 when $i \neq j$.
- A_x is also positive definite, which means that $\mathbf{x}^T A_x \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$. It also implies $\lambda_j > 0$. Symmetric positive definite (SPD) systems are particularly attractive because they can be solved without pivoting using Cholesky factorization, $A_x = LL^T$, or iteratively using preconditioned conjugate gradient (PCG) iteration. (For large sparse systems, PCG is typically the best option.)
- A_x is *sparse*. It has a fixed maximal number of nonzeros per row, which implies that the total number of nonzeros in A_x is linear in the problem size, n. We say that the storage cost for A_x is O(n), meaning that there exists a constant C independent of n such that the total number of words to be stored is < Cn.
- A_x is banded with bandwidth w = 1, which implies that $k_{ij} = 0$ for all |i j| > w. A consequence is that the storage bound for the Cholesky factor L is < (w + 1)n. For the 1D case with w=1, the storage for L is thus O(n). As we shall see, the work to compute the factors is $O(w^2n)$.

- Returning to the 2D case, we see that we can express A_{2D} as $(I_y \otimes A_x) + (A_y \otimes I_x)$.
- The first term is nothing other than $\frac{\delta^2}{\delta x^2}$ being applied to each row (j) of u_{ij} and the second term amounts to applying $\frac{\delta^2}{\delta y^2}$ to each column (i) on the grid.
- For $h := \Delta x = \Delta y$, the left and right terms take on forms that we've already seen.

$$A_{2D} = \begin{pmatrix} A_x \\ A_x \\ \vdots \\ A_x \end{pmatrix} + \frac{1}{h^2} \begin{pmatrix} 2I_x & -I_x \\ -I_x & 2I_x & \ddots \\ \vdots & \ddots & \ddots & -I_x \\ & & -I_x & 2I_x \end{pmatrix}$$

$$= (I_y \otimes A_x) + (A_y \otimes I_x)$$

$$\frac{\partial^2 u}{\partial x^2}$$
 term

	$ \begin{pmatrix} 2 & -1 \\ -1 & 2 & -1 \end{pmatrix} $ $ -1 & \ddots & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 $		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{1}{h^2}$			
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$$\frac{\partial^2 u}{\partial y^2}$$
 term

	$\begin{pmatrix} 2 \\ 2 \end{pmatrix}$	-1 -1		
	٠.	٠.		
	· 2	·. -1		
		2	·	
	-1	2	·	
	٠.	·	·	
	٠.	٠.	٠	
$\frac{1}{h^2}$		2	··.	
16		·	·	-1
		· .	·	-1
			· .	٠.
		·.	-1	$\frac{-1}{2}$
			-1	2
			·. -1	·. ₂)

$$A_{2D} = (I_y \otimes A_x) + (A_y \otimes I_x),$$

- Because the A_{2D} is the sum of two systems, we can't use the tensor-product inverse directly.
- We instead use the similarity transformation introduced earlier. Specifically, compute the (small) similarity transformations

$$A_x = S_x \Lambda_x S_x^{-1}, \qquad A_y =: S_y \Lambda_y S_y^{-1},$$

• Noting that $I_x = S_x I_x S_x^{-1}$ and $I_y = S_y I_y S_y^{-1}$, we have

$$A_{2D} = (S_y I_y S_y^{-1} \otimes S_x \Lambda_x S_x^{-1}) + (S_y \Lambda_y S_y^{-1} \otimes S_x I_x S_x^{-1})$$

$$= (S_y \otimes S_x) (I_y \otimes \Lambda_x + \Lambda_y \otimes I_x) (S_y^{-1} \otimes S_x^{-1})$$

$$= S\Lambda S^{-1}.$$

• The inverse is then $A_{2D}^{-1} = S\Lambda^{-1}S^{-1}$ (verify!), or

$$A_{2D}^{-1} = (S_y \otimes S_x)(I_y \otimes \Lambda_x + \Lambda_y \otimes I_x)^{-1}(S_y^{-1} \otimes S_x^{-1}).$$

• Notice that $\Lambda := (I_y \otimes \Lambda_x + \Lambda_y \otimes I_x)$ is diagonal and easily inverted.

• The solution to $A_{2D}\mathbf{u} = \mathbf{f}$ is thus

$$\mathbf{u} = (S_y \otimes S_x)(I_y \otimes \Lambda_x + \Lambda_y \otimes I_x)^{-1}(S_y^{-1} \otimes S_x^{-1})\mathbf{f}.$$

• In fast matrix-matrix product form, this has a particularly compact expression:

$$U = S_x[D \circ (S_x^{-1} F S_y^{-T})] S_y^T,$$

where $W = D \circ V$ is used to denote *pointwise* multiplication of the entries of the matrix pair (D, V). That is, $w_{ij} := d_{ij} * v_{ij}$.

• Note that, for the particular 1D A_x and A_y matrices in this example that the eigenvectors are orthogonal. If we normalize the columns, then $S_x^{-1} = S_x^T$ (same for y).

Computing $||A||_2$ and cond₂(A).

• Recall: $cond(A) := ||A^{-1}|| \cdot ||A||,$

$$||A|| := \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||}{||\mathbf{x}||},$$

$$||\mathbf{x}||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} = \sqrt{\mathbf{x}^T \mathbf{x}},$$

$$||\mathbf{x}||_2^2 = \mathbf{x}^T \mathbf{x}.$$

• From now on, drop the subscript "2".

$$||\mathbf{x}||^2 = \mathbf{x}^T \mathbf{x}$$

$$||A\mathbf{x}||^2 = (A\mathbf{x})^T (A\mathbf{x}) = \mathbf{x}^T A^T A \mathbf{x}.$$

• Matrix norm:

$$||A||^{2} = \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||^{2}}{||\mathbf{x}||^{2}},$$

$$= \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} A^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}$$

$$= \lambda_{\max} (A^{T} A) =: \text{ spectral radius of } (A^{T} A).$$

- The symmetric positive definite matrix $B := A^T A$ has positive eigenvalues.
- ullet All symmetric matrices B have a complete set of orthonormal eigenvectors satisfying

$$B\mathbf{z}_j = \lambda_j \mathbf{z}_j, \quad \mathbf{z}_i^T \mathbf{z}_j = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$

• Note: If $\lambda_i = \lambda_j$, $i \neq j$, then can have $\mathbf{z}_i^T \mathbf{z}_j \neq 0$, but we can orthogonalize \mathbf{z}_i and \mathbf{z}_j so that $\tilde{\mathbf{z}}_i^T \tilde{\mathbf{z}}_j = 0$ and

$$B\tilde{\mathbf{z}}_i = \lambda_i \tilde{\mathbf{z}}_i \quad \lambda_i = \lambda_j$$
$$B\tilde{\mathbf{z}}_j = \lambda_j \tilde{\mathbf{z}}_j.$$

- Assume eigenvalues are sorted with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.
- For any \mathbf{x} we have: $\mathbf{x} = c_1 \mathbf{z}_1 + c_2 \mathbf{z}_2 + \cdots + c_n \mathbf{z}_n$.
- Let $||\mathbf{x}|| = 1$.

• Want to find
$$\max_{||\mathbf{x}||=1} \frac{\mathbf{x}^T B \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \max_{||\mathbf{x}||=1} \mathbf{x}^T B \mathbf{x}.$$

• Note:
$$\mathbf{x}^T \mathbf{x} = \left(\sum_{i=1}^n c_i \mathbf{z}_i\right)^T \left(\sum_{j=1}^n c_j \mathbf{z}_j\right)$$

$$= \sum_{i=1}^n \sum_{j=1}^n c_i c_j \mathbf{z}_i^T \mathbf{z}_j$$

$$= \sum_{i=1}^n \sum_{j=1}^n c_i c_j \delta_{ij}$$

$$= \sum_{i=1}^{n} c_i^2 = 1.$$

$$\implies c_1^2 = 1 - \sum_{i=2}^n c_i^2.$$

$$\mathbf{x}^{T}B\mathbf{x} = \left(\sum_{i=1}^{n} c_{i}\mathbf{z}_{i}\right)^{T} \left(\sum_{j=1}^{n} c_{j}B\mathbf{z}_{j}\right)$$

$$= \left(\sum_{i=1}^{n} c_{i}\mathbf{z}_{i}\right)^{T} \left(\sum_{j=1}^{n} c_{j}\lambda_{j}\mathbf{z}_{j}\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}\lambda_{j}c_{j}\mathbf{z}_{i}^{T}\mathbf{z}_{j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}\lambda_{j}c_{j}\delta_{ij}$$

$$= \sum_{i=1}^{n} c_{i}^{2}\lambda_{i} = c_{1}^{2}\lambda_{1} + c_{2}^{2}\lambda_{2} + \dots + c_{n}^{2}\lambda_{n}$$

$$= \lambda_{1} \left[c_{1}^{2} + c_{2}^{2}\beta_{2} + \dots + c_{n}^{2}\beta_{n}\right], \quad 0 < \beta_{i} := \frac{\lambda_{i}}{\lambda_{1}} \leq 1,$$

$$= \lambda_{1} \left[(1 - c_{2}^{2} - \dots - c_{n}^{2}) + c_{2}^{2}\beta_{2} + \dots + c_{n}^{2}\beta_{n}\right]$$

$$= \lambda_{1} \left[1 - (1 - \beta_{2})c_{2}^{2} + (1 - \beta_{3})c_{3}^{2} + \dots + (1 - \beta_{n})c_{n}^{2}\right]$$

$$= \lambda_{1} \left[1 - \text{some positive (or zero) numbers}\right].$$

- Expression is maximized when $c_2 = c_3 = \cdots = c_n = 0, \Longrightarrow c_1 = 1.$
- Maximum value $\mathbf{x}^T B \mathbf{x} = \lambda_{\max}(B) = \lambda_1$.
- Similarly, can show min $\mathbf{x}^T B \mathbf{x} = \lambda_{\min}(B) = \lambda_n$.

• So, $||A||^2 = \max_{\lambda} \lambda(A^T A) = \text{spectral radius of } A^T A$.

• Now,
$$||A^{-1}||^2 = \max_{\mathbf{x} \neq 0} \frac{||A^{-1}\mathbf{x}||^2}{||\mathbf{x}||^2}.$$

• Let $\mathbf{x} = A\mathbf{y}$:

$$||A^{-1}||^{2} = \max_{\mathbf{y} \neq 0} \frac{||A^{-1}A\mathbf{y}||^{2}}{||A\mathbf{y}||^{2}} = \max_{\mathbf{y} \neq 0} \frac{||\mathbf{y}||^{2}}{||A\mathbf{y}||^{2}} = \left(\min_{\mathbf{y} \neq 0} \frac{||A\mathbf{y}||^{2}}{||\mathbf{y}||^{2}}\right)^{-1}$$
$$= \frac{1}{\lambda_{\min}(A^{T}A)}.$$

• So, $\operatorname{cond}_2(A) = ||A^{-1}|| \cdot ||A||$,

$$\operatorname{cond}_2(A) = \sqrt{\frac{\lambda_{\max}(A^T A)}{\lambda_{\min}(A^T A)}}.$$

Special Types of Linear Systems

- Work and storage can often be saved in solving linear system if matrix has special properties
- Examples include
 - Symmetric: $A = A^T$, $a_{ij} = a_{ji}$ for all i, j
 - Positive definite: $x^T A x > 0$ for all $x \neq 0$
 - Band: $a_{ij} = 0$ for all $|i j| > \beta$, where β is bandwidth of A
 - Sparse: most entries of A are zero

Symmetric Positive Definite (SPD) Matrices

- Very common in optimization and physical processes
- Easiest example:
 - \square If B is invertible, then A := B^TB is SPD.
- \square SPD systems of the form A $\underline{x} = \underline{b}$ can be solved using
 - \Box (stable) Cholesky factorization $A = LL^{T_i}$ or
 - □ iteratively with the most robust iterative solver, conjugate gradient iteration (generally with preconditioning, known as preconditioned conjugate gradients, PCG).

Cholesky Factorization and SPD Matrices.

- A is SPD: $A = A^T$ and $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$.
- Seek a symmetric factorization $A = \tilde{L}\tilde{L}^T$ (not LU).
 - -L not lower triangular but not unit lower triangular.
 - That is, Lt_{ii} not necessarily 1.
- Alternatively, seek factorization $A = LDL^T$, where L is unit lower triangular and D is diagonal.

- Start with $LDL^T = A$.
- Clearly, LU = A with $U = DL^T$.
 - Follows from uniqueness of LU factorization.
 - D is a row scaling of L^T and thus $D_{ii} = U_{ii}$.
 - A property of SPD matrices is that all pivots are positive.
 - (Another property is that you do not need to pivot.)

• Consider standard update step:

$$a_{ij} = a_{ij} - \frac{a_{ik} a_{kj}}{a_{kk}}$$
$$= a_{ij} - \frac{a_{ik} a_{jk}}{a_{kk}}$$

- Usual multiplier column entries are $l_{ik} = a_{ik}/a_{kk}$.
- Usual pivot row entries are $u_{kj} = a_{kj} = a_{jk}$.
- So, if we factor $1/d_{kk} = 1/a_{kk}$ out of U, we have:

$$d_{kk}(a_{kj}/a_{kk}) = d_{kk}l_{kj}$$

$$\longrightarrow U = D(D^{-1}U)$$

$$= DL^{T}.$$

• For Cholesky, we have

$$A = LDL^T = L\sqrt{D}\sqrt{D}L^T = \tilde{L}\tilde{L}^T,$$

with $\tilde{L} = L\sqrt{D}$.

Symmetric Positive Definite Matrices

• If A is symmetric and positive definite, then LU factorization can be arranged so that $U = L^T$, which gives Cholesky factorization

$$oldsymbol{A} = oldsymbol{L} oldsymbol{L}^T$$

where L is lower triangular with positive diagonal entries

- Algorithm for computing it can be derived by equating corresponding entries of \boldsymbol{A} and $\boldsymbol{L}\boldsymbol{L}^T$
- In 2×2 case, for example,

$$\begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} \\ 0 & l_{22} \end{bmatrix}$$

implies

$$l_{11} = \sqrt{a_{11}}, \quad l_{21} = a_{21}/l_{11}, \quad l_{22} = \sqrt{a_{22} - l_{21}^2}$$

Cholesky Factorization (Text)

```
Algorithm 2.7 Cholesky Factorization
    for k = 1 to n
                                                { loop over columns }
        a_{kk} = \sqrt{a_{kk}}
        for i = k + 1 to n
            a_{ik} = a_{ik}/a_{kk}
                                                { scale current column }
        end
        for j = k + 1 to n
                                                { from each remaining column,
            for i = j to n
                                                    subtract multiple
                                                    of current column }
                a_{ij} = a_{ij} - a_{ik} \cdot a_{jk}
            end
        end
   end
```

After a row scaling, this is just standard LU decomposition, exploiting symmetry in the LU factors and A. ($U=L^T$)

Cholesky Factorization

• One way to write resulting general algorithm, in which Cholesky factor L overwrites original matrix A, is

```
for j=1 to n

for k=1 to j-1

for i=j to n

a_{ij}=a_{ij}-a_{ik}\cdot a_{jk}

end

end

a_{jj}=\sqrt{a_{jj}}

for k=j+1 to n

a_{kj}=a_{kj}/a_{jj}

end

end
```


Cholesky Factorization, continued

- Features of Cholesky algorithm for symmetric positive definite matrices
 - All n square roots are of positive numbers, so algorithm is well defined
 - No pivoting is required to maintain numerical stability
 - Only lower triangle of A is accessed, and hence upper triangular portion need not be stored
 - Only $n^3/6$ multiplications and similar number of additions are required
- Thus, Cholesky factorization requires only about half work and half storage compared with LU factorization of general matrix by Gaussian elimination, and also avoids need for pivoting

Linear Algebra Very Short Summary

Main points:

- Conditioning of matrix cond(A) bounds our expected accuracy.
 - \blacksquare e.g., if cond(A) ~ 10⁵ we expect at most 11 significant digits in \underline{x} .
 - Why?
 - We start with IEEE double precision 16 digits. We lose 5 because condition (A) $\sim 10^5$, so we have 11 = 16-5.
- □ Stable algorithm (i.e., pivoting) important to realizing this bound.
 - Some systems don't need pivoting (e.g., SPD, diagonally dominant)
 - Unstable algorithms can sometimes be rescued with iterative refinement.
- Costs:
 - □ Full matrix \rightarrow O(n²) storage, O(n³) work (wall-clock time)
 - Sparse or banded matrix, substantially less.

- The following slides present the book's derivation of the LU factorization process.
- ☐ I'll highlight a few of them that show the equivalence between the outer product approach and the elementary elimination matrix approach.

Example: Triangular Linear System

$$\begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix}$$

- Using back-substitution for this upper triangular system, last equation, $4x_3 = 8$, is solved directly to obtain $x_3 = 2$
- Next, x_3 is substituted into second equation to obtain $x_2=2$
- Finally, both x_3 and x_2 are substituted into first equation to obtain $x_1 = -1$

Elimination

- To transform general linear system into triangular form, we need to replace selected nonzero entries of matrix by zeros
- This can be accomplished by taking linear combinations of rows
- Consider 2-vector $\boldsymbol{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$
- If $a_1 \neq 0$, then

$$\begin{bmatrix} 1 & 0 \\ -a_2/a_1 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ 0 \end{bmatrix}$$

Elementary Elimination Matrices

• More generally, we can annihilate *all* entries below kth position in n-vector a by transformation

$$m{M}_{k}m{a} = egin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \ dots & \ddots & dots & dots & \ddots & dots \ 0 & \cdots & 1 & 0 & \cdots & 0 \ 0 & \cdots & -m_{k+1} & 1 & \cdots & 0 \ dots & \ddots & dots & dots & \ddots & dots \ 0 & \cdots & -m_{n} & 0 & \cdots & 1 \end{bmatrix} egin{bmatrix} a_{1} \ dots \ a_{k} \ a_{k+1} \ dots \ a_{n} \end{bmatrix} = egin{bmatrix} a_{1} \ dots \ 0 \ dots \ 0 \ dots \ 0 \end{bmatrix}$$

where
$$m_i = a_i/a_k$$
, $i = k+1, \ldots, n$

• Divisor a_k , called *pivot*, must be nonzero

Elementary Elimination Matrices, continued

- Matrix M_k , called *elementary elimination matrix*, adds multiple of row k to each subsequent row, with *multipliers* m_i chosen so that result is zero
- ullet M_k is unit lower triangular and nonsingular
- $M_k = I m_k e_k^T$, where $m_k = [0, \dots, 0, m_{k+1}, \dots, m_n]^T$ and e_k is kth column of identity matrix
- $m{M}_k^{-1} = m{I} + m{m}_k m{e}_k^T$, which means $m{M}_k^{-1} = : m{L}_k$ is same as $m{M}_k$ except signs of multipliers are reversed

Elementary Elimination Matrices, continued

• If M_j , j > k, is another elementary elimination matrix, with vector of multipliers m_j , then

$$egin{array}{lll} oldsymbol{M}_k oldsymbol{M}_j &=& oldsymbol{I} - oldsymbol{m}_k oldsymbol{e}_k^T - oldsymbol{m}_j oldsymbol{e}_j^T + oldsymbol{m}_k oldsymbol{e}_k^T oldsymbol{m}_j oldsymbol{e}_j^T \ &=& oldsymbol{I} - oldsymbol{m}_k oldsymbol{e}_k^T - oldsymbol{m}_j oldsymbol{e}_j^T \ &=& oldsymbol{I} - oldsymbol{m}_k oldsymbol{e}_k^T - oldsymbol{m}_j oldsymbol{e}_j^T \end{array}$$

which means product is essentially "union," and similarly for product of inverses, $L_k L_j$

Comment on update step and $\underline{m}_k \underline{e}^T_k$

- □ Recall, $\underline{\mathbf{v}} = \mathbf{C} \ \underline{\mathbf{w}} \in \text{span}\{\mathbf{C}\}.$
- Arr Arr
- ☐ If $C = \underline{c}$, i.e., C is a column vector and therefore of rank 1, then V is in span{C} and is of rank 1.
- ☐ All columns of V are multiples of <u>c</u>.
- ☐ Thus, $W = \underline{c} \underline{r}^T$ is an n x n matrix of rank 1.
 - All columns are multiples of the first column and
 - All rows are multiples of the first row.

Elementary Elimination Matrices, continued

- Matrix M_k , called *elementary elimination matrix*, adds multiple of row k to each subsequent row, with *multipliers* m_i chosen so that result is zero
- ullet M_k is unit lower triangular and nonsingular
- $M_k = I m_k e_k^T$, where $m_k = [0, \dots, 0, m_{k+1}, \dots, m_n]^T$ and e_k is kth column of identity matrix
- $m{M}_k^{-1} = m{I} + m{m}_k m{e}_k^T$, which means $m{M}_k^{-1} = : m{L}_k$ is same as $m{M}_k$ except signs of multipliers are reversed

Example: Elementary Elimination Matrices

• For
$$a = \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix}$$
,

$$oldsymbol{M}_1oldsymbol{a} = egin{bmatrix} 1 & 0 & 0 \ -2 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix} egin{bmatrix} 2 \ 4 \ -2 \end{bmatrix} = egin{bmatrix} 2 \ 0 \ 0 \end{bmatrix}$$

and

$$m{M}_2m{a} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1/2 & 1 \end{bmatrix} egin{bmatrix} 2 \ 4 \ -2 \end{bmatrix} = egin{bmatrix} 2 \ 4 \ 0 \end{bmatrix}$$

Note that

$$m{L}_1 = m{M}_1^{-1} = egin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \quad m{L}_2 = m{M}_2^{-1} = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1/2 & 1 \end{bmatrix}$$

and

$$m{M}_1m{M}_2 = egin{bmatrix} 1 & 0 & 0 \ -2 & 1 & 0 \ 1 & 1/2 & 1 \end{bmatrix}, \quad m{L}_1m{L}_2 = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & -1/2 & 1 \end{bmatrix}$$

Gaussian Elimination

- To reduce general linear system Ax = b to upper triangular form, first choose M_1 , with a_{11} as pivot, to annihilate first column of A below first row
 - System becomes $M_1Ax = M_1b$, but solution is unchanged
- Next choose M_2 , using a_{22} as pivot, to annihilate second column of M_1A below second row
 - System becomes $M_2M_1Ax = M_2M_1b$, but solution is still unchanged
- Process continues for each successive column until all subdiagonal entries have been zeroed

Gaussian Elimination

- To reduce general linear system Ax = b to upper triangular form, first choose M_1 , with a_{11} as pivot, to annihilate first column of A below first row
 - System becomes $M_1Ax = M_1b$, but solution is unchanged
- Next choose M_2 , using a_{22} as pivot, to annihilate second column of M_1A below second row
 - System becomes $M_2M_1Ax = M_2M_1b$, but solution is still unchanged
- Technically, this should be a'_{22} , the 2-2 entry in $A' := M_1A$. Thus, we don't know all the pivots in advance.

Gaussian Elimination, continued

Resulting upper triangular linear system

$$egin{array}{lcl} oldsymbol{M}_{n-1} \cdots oldsymbol{M}_1 oldsymbol{A} oldsymbol{x} &= oldsymbol{M} oldsymbol{b} \ oldsymbol{M} oldsymbol{A} oldsymbol{x} &= oldsymbol{M} oldsymbol{b} \end{array}$$

can be solved by back-substitution to obtain solution to original linear system $m{A}m{x} = m{b}$

Process just described is called Gaussian elimination

LU Factorization

• Product $L_k L_j$ is unit lower triangular if k < j, so

$$m{L} = m{M}^{-1} = m{M}_1^{-1} \cdots m{M}_{n-1}^{-1} = m{L}_1 \cdots m{L}_{n-1}$$

is unit lower triangular

- By design, U = MA is upper triangular
- So we have

$$A = LU$$

with $m{L}$ unit lower triangular and $m{U}$ upper triangular

 Thus, Gaussian elimination produces LU factorization of matrix into triangular factors

LU Factorization, continued

- Having obtained LU factorization, Ax = b becomes LUx = b, and can be solved by forward-substitution in lower triangular system Ly = b, followed by back-substitution in upper triangular system Ux = y
- ullet Note that $oldsymbol{y} = oldsymbol{M} oldsymbol{b}$ is same as transformed right-hand side in Gaussian elimination
- Gaussian elimination and LU factorization are two ways of expressing same solution process

Example: Gaussian Elimination

Use Gaussian elimination to solve linear system

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \mathbf{b}$$

ullet To annihilate subdiagonal entries of first column of A,

$$\mathbf{M}_{1}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix},$$

$$m{M}_1m{b} = egin{bmatrix} 1 & 0 & 0 \ -2 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix} egin{bmatrix} 2 \ 8 \ 10 \end{bmatrix} = egin{bmatrix} 2 \ 4 \ 12 \end{bmatrix}$$

• To annihilate subdiagonal entry of second column of M_1A ,

$$M_2 M_1 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} = U,$$

$$oldsymbol{M}_2 oldsymbol{M}_1 oldsymbol{b} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & -1 & 1 \end{bmatrix} egin{bmatrix} 2 \ 4 \ 12 \end{bmatrix} = egin{bmatrix} 2 \ 4 \ 8 \end{bmatrix} = oldsymbol{M} oldsymbol{b}$$

 We have reduced original system to equivalent upper triangular system

$$egin{aligned} oldsymbol{U}oldsymbol{x} &= egin{bmatrix} 2 & 4 & -2 \ 0 & 1 & 1 \ 0 & 0 & 4 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = egin{bmatrix} 2 \ 4 \ 8 \end{bmatrix} = oldsymbol{M}oldsymbol{b} \end{aligned}$$

which can now be solved by back-substitution to obtain

$$m{x} = egin{bmatrix} -1 \ 2 \ 2 \end{bmatrix}$$

To write out LU factorization explicitly,

$$m{L}_1m{L}_2 = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1 & 1 \end{bmatrix} = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & 1 & 1 \end{bmatrix} = m{L}$$

so that

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} = \mathbf{L}\mathbf{U}$$

