
❑  Sherman Morrison Formula 
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Solving Modified Problems

If right-hand side of linear system changes but matrix does
not, then LU factorization need not be repeated to solve
new system

Only forward- and back-substitution need be repeated for
new right-hand side

This is substantial savings in work, since additional
triangular solutions cost only O(n

2
) work, in contrast to

O(n

3
) cost of factorization
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Sherman-Morrison Formula

Sometimes refactorization can be avoided even when
matrix does change

Sherman-Morrison formula gives inverse of matrix
resulting from rank-one change to matrix whose inverse is
already known

(A� uv

T
)

�1
= A

�1
+A

�1
u(1� v

T
A

�1
u)

�1
v

T
A

�1

where u and v are n-vectors

Evaluation of formula requires O(n

2
) work (for

matrix-vector multiplications) rather than O(n

3
) work

required for inversion
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Rank-One Updating of Solution

To solve linear system (A� uv

T
)x = b with new matrix,

use Sherman-Morrison formula to obtain

x = (A� uv

T
)

�1
b

= A

�1
b+A

�1
u(1� v

T
A

�1
u)

�1
v

T
A

�1
b

which can be implemented by following steps
Solve Az = u for z, so z = A

�1
u

Solve Ay = b for y, so y = A

�1
b

Compute x = y + ((v

T
y)/(1� v

T
z))z

If A is already factored, procedure requires only triangular
solutions and inner products, so only O(n

2
) work and no

explicit inverses
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Example: Rank-One Updating of Solution

Consider rank-one modification
2

4
2 4 �2

4 9 �3

�2 �1 7

3

5

2

4
x1

x2

x3

3

5
=

2

4
2

8

10

3

5

(with 3, 2 entry changed) of system whose LU factorization
was computed in earlier example
One way to choose update vectors is

u =

2

4
0

0

�2

3

5 and v =

2

4
0

1

0

3

5

so matrix of modified system is A� uv

T
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Example, continued

Using LU factorization of A to solve Az = u and Ay = b,

z =

2

4
�3/2

1/2

�1/2

3

5 and y =

2

4
�1

2

2

3

5

Final step computes updated solution

x = y +

v

T
y

1� v

T
z

z =

2

4
�1

2

2

3

5
+

2

1� 1/2

2

4
�3/2

1/2

�1/2

3

5
=

2

4
�7

4

0

3

5

We have thus computed solution to modified system
without factoring modified matrix
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Q: Under what circumstances could the 
denominator be zero ? 



Sherman Morrison 

[1] Solve A˜

x =

˜

b:

A �! LU ( O(n3
) work )

Solve L˜y =

˜

b,

Solve U ˜

x =

˜

y ( O(n2
) work ).

[2] New problem:�
A� uv

T
�
x = b. (di↵erent x and b)

Key Idea:

•
�
A� uv

T
�
x di↵ers from Ax by

only a small amount of information.

• Rewrite as: Ax+ u� = b

� := �vT
x  ! v

T
x+ � = 0



Sherman Morrison 

Extended system:

Ax+ �u = b

v

T
x+ � = 0



Sherman Morrison 

Extended system:

Ax+ �u = b

v

T
x+ � = 0

In matrix form:


A u

v

T
1

�✓
x

�

◆
=

✓
b

0

◆



Sherman Morrison 

Extended system:

Ax+ �u = b

v

T
x+ � = 0

In matrix form:


A u

v

T
1

�✓
x

�

◆
=

✓
b

0

◆

Eliminate for �:

A u

0 1� v

TA�1
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TA�1
b
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Extended system:

Ax+ �u = b

v

T
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Ax+ �u = b

v

T
x+ � = 0

In matrix form:


A u

v

T
1

�✓
x

�

◆
=

✓
b

0

◆

Eliminate for �:

A u

0 1� v

TA�1
u

�✓
x

�

◆
=

✓
b

�v

TA�1
b

◆

� = �
�
1� v

TA�1
u

��1
v

TA�1
b

x = A�1
(b� u�) = A�1

h
b+ u

�
1� v

TA�1
u

��1
v

TA�1
b

i
� = �

�
1� v

TA�1
u

��1
v

TA�1
b

x = A�1
(b� u�) = A�1

h
b+ u

�
1� v

TA�1
u

��1
v

TA�1
b

i

�
A� uv

T
��1

= A�1
+ A�1

u

�
1� v

TA�1
u

��1
v

TA�1.



Sherman Morrison:  Potential Singularity 

• Consider the modified system:

�
A� uv

T
�
x = b.

• The solution is

x =

�
A� uv

T
��1

b

=

h
I + A�1

u

�
1� v

TA�1
u

��1
v

TA�1
i
A�1

b.

• If 1 � v

TA�1
u = 0, failure.

• Why?

• Let

˜A :=

�
A� uv

T
�
and consider,

˜AA�1
=

�
A� uv

T
�
A�1

=

�
I � uv

TA�1
�
.

• Look at the product

˜AA�1
u,

˜AA�1
u =

�
I � uv

TA�1
�
u

= u� uv

TA�1
u.

• If v

TA�1
u = 0, then

˜AA�1
u = u� u = 0,

which means that

˜A is singular since we assume that A�1
exists.

• Thus, an unfortunate choice of u and v can lead to a singular

modified matrix and this singularity is indicated by v

TA�1
u = 1.
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Tensor Product Matrics 

 

Tensor-Product Matrices

The tensor- (or Kronecker-) product of matrices A and B is denoted as

C = A ⌦ B

and is defined as the block matrix having entries

C :=

0

BB@

a11B a12B · · · · · · a1nB
a21B a22B · · · · · · a2nB
.

.

.

.

.

.

.

.

.

am1B am2B · · · · · · amnB

1

CCA .



Tensor-Product Matrices 

❑  Tensor-product forms arise in many applications, including 

❑  Density Functional Theory (DFT) in computational chemistry                        
(e.g., 7-dimensional tensors) 

❑  Partial differential equations 

❑  Image processing (e.g., multidimensional FFTs) 

❑  Machine learning (ML) 

❑  Their importance in ML/AI applications is such that software developers 
and computer architects are now designing fast tensor-contraction engines 
to further accelerate tensor-product manipulations. 



Tensor-Product Matrices 

❑  In Computer Vision, there is even a conference series on this topic. 



• Our interest here is to understand how tensor-product forms can yield
very rapid direct solvers for systems of the form Ax = b.

• There are two ways in which tensor-product-based matrices for the form
C = A⌦ B accelerate computation:

1. They can be used to e↵ect very fast matrix-vector products.

2. They can be used to e↵ect very fast matrix-matrix products.

• To begin, we focus on the matrix-matrix products, which is a bit easier
to understand.



Product Rule for Tensor-Product Matrices

• Assume that the matrix pairs (D,A) and (E,B) are dimensioned such that the products DA
and EB are well-defined.

• If

C := A ⌦ B and F := D ⌦ E,

then, the matrix product FC is given by

FC = (D ⌦ E) (A ⌦ B)

= DA ⌦ EB.

• This result follows from the definition of the Kronecker product, ⌦, and has many important
consequences.



Uses of the Product Rule: Inverses

(D ⌦ E) (A ⌦ B) = DA ⌦ EB.

• If C := A ⌦ B, then

C�1 := A�1 ⌦ B�1.

• Specifically,

C�1C =
�
A�1 ⌦ B�1

�
(A ⌦ B) = A�1A ⌦ B�1B

= IA ⌦ IB = I,

where IA and IB are identity matrices equal in size to A and B, repsectively.

• Thus, the inverse of C is the tensor-product of two much smaller matrices, A
and B.



Uses of the Product Rule: Inverses

• Example:

– Suppose A and B are full N ⇥N matrices and C = A⌦B is n⇥ n with
n = N 2.

– The LU factorization of C is

LU = (LA ⌦ LB)(UA ⌦ UB).

– What is the cost of computing the tensor product form of LU , rather
than LU directly as a function of N?

– What is the ratio (full time over tensor-product time) when N = 100?



The Curse of Dimensionality

• The advantage of the tensor-product representation increases with higher
dimensions.

• Suppose Aj is N ⇥N , for j = 1, . . . , d, and

C = Ad ⌦ Ad�1 ⌦ · · · ⌦ A1,

with inverse

C�1 = A�1
d ⌦ A�1

d�1 ⌦ · · · ⌦ A�1
1 .

• Tensor-product forms are critical for e�cient computation in many large-
dimensional scientific problems.

• Application of the tensor operator, however, will take more work, since we
obviously have to touch n = 107 entries. We’ll see in a moment that the cost
of application is ⇡ 2d · n · n 1

d ⌧ O(n3).

• Consider d = 7 and N = 10.

– The number of nonzeros in C (if formed) is N 14, which is 800 TB and
would cost you about $10,000 in disk drives.

– Factorization of the full form will take about 10 minutes on the world’s
fastest computer in 2021, or about 600 years on my mac.

– The factorization cost for the tensor product form is ⇡ 5000 operations.
A blink of the eye on your laptop.

– Application of C�1 in tensor form will require about 2 ·7 ·108 ⇡ 1.4⇥109

operations, which is less than a second if you sustain > 1 GFLOPS on
your computer.

• With the significant reduction of memory references and operations, the cost
of application of C�1 in the high-rank tensor case is typically dominated by
the cost of transfering the right-hand side and solution vectors from and to
main memory. That is, the cost scales like cn = cNd, where c is some measure
of the inverse memory bandwidth.

Thus, high-rank tensors transform a compute-bound problem to a memory-
bound one.



The Curse of Dimensionality

• The advantage of the tensor-product representation increases with higher
dimensions.

• Suppose Aj is N ⇥N , for j = 1, . . . , d, and

C = Ad ⌦ Ad�1 ⌦ · · · ⌦ A1,

with inverse

C�1 = A�1
d ⌦ A�1

d�1 ⌦ · · · ⌦ A�1
1 .

• Tensor-product forms are critical for e�cient computation in many large-
dimensional scientific problems.

• Application of the tensor operator, however, will take more work, since we
obviously have to touch n = 107 entries. We’ll see in a moment that the cost
of application is ⇡ 2d · n · n 1

d ⌧ O(n3).

• Consider d = 7 and N = 10.

– The number of nonzeros in C (if formed) is N 14, which is 800 TB and
would cost you about $10,000 in disk drives.

– Factorization of the full form will take about 10 minutes on the world’s
fastest computer in 2021, or about 600 years on my mac.

– The factorization cost for the tensor product form is ⇡ 5000 operations.
A blink of the eye on your laptop.

– Application of C�1 in tensor form will require about 2 ·7 ·108 ⇡ 1.4⇥109

operations, which is less than a second if you sustain > 1 GFLOPS on
your computer.

• With the significant reduction of memory references and operations, the cost
of application of C�1 in the high-rank tensor case is typically dominated by
the cost of transfering the right-hand side and solution vectors from and to
main memory. That is, the cost scales like cn = cNd, where c is some measure
of the inverse memory bandwidth.

Thus, high-rank tensors transform a compute-bound problem to a memory-
bound one.



Uses of the Product Rule: Eigenvalues

• Suppose that A is an N ⇥N matrix with the similarity transformation

(Chapter 4),

A = S⇤S�1,

where S = [s1 s2 · · · sN ] is the (full) matrix of eigenvectors of A and
⇤=diag(�i) is the diagonal matrix of corresponding eigenvalues.

That is, Asi = si �i.

• Let TMT�1 denote the similarity transformation for B, with eigenvector
matrix T and eigenvalue matrix M.

• Then the similarity transformation for C = A ⌦ B is

A ⌦ B =
�
S⇤S�1

�
⌦

�
TMT�1

�

= (S ⌦ T ) (⇤⌦M)
�
S�1 ⌦ T�1

�

= UNU�1.

• Thus, we have diagonalized C by diagonalizing two smaller systems A
and B.



Fast Matrix-Vector Products 

❑  Q:  What is the cost of Cu,  vs. the fast form for (A  B)u ? 



Fast Matrix-Vector Products via Tensor Contraction

• Consider evaluation of w = Cv := (A⌦ B)u.

• To avoid extra work and storage, we evaluate the product as

w = (A⌦ I)(I ⌦ B)u,

or

v = (I ⌦ B)u,

w = (A⌦ I)u.

• Start with v = (I ⌦ B)u.
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• In (I ⌦ B)u, B is applied M times to vectors of length M .

• We can reshape the vector u and output vector v to be M⇥N matrices, such
that v = (I ⌦ B)u is computed as a matrix-matrix product:

0

BBBBBBBBBBBBB@

v1 v1+M v... v... v...

v2 v2+M v... v... v...

v... v... v... v... v...

v... v... v... v... v...
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1

CCCCCCCCCCCCCA
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1

CCCCCCCCCCCCCA

• It is convenient to relabel the indices on u and v to match the contraction
indices of the tensor operator.

• Specifically, let u = (u1 u2 . . . un)T and U be the matrix form with entries

Uij = uı̂, for ı̂ := i+M(j � 1).

• Then, with the same mapping for b �! V , we can write

V = BU.

• In index form (convenient for later...)

Vij =
MX

p=1

BipUpj.
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• The next step is to compute w = (A ⌦ I)v:
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• Here, the picture is less obvious than for the block-diagonal (I ⌦ B) case.

• To make things simpler, we’ve enumerated v and w with the two-index sub-
script in the preceding slide such that they are already in tensor form.

• With a bit of inspection, it becomes clear that w = (A⌦ I)v is given by a
contraction that is similar to the preceding one. Namely,

Wij =
MX

q=1

Ajq Viq =
MX

q=1

AT
qj Viq =

MX

q=1

Viq A
T
qj.

• The last form is a proper matrix-matrix product of the form W = V AT .

• The complete contraction evaluation, w = (A ⌦ B)u, for 2D (i.e., rank-2)
tensors is thus simply,

W = B UAT.



• Contractions for higher-rank tensors take on a similar form.

• For example, a rank-3 contraction w = (A ⌦ B ⌦ C)u is evaluated as

wijk =
NAX

r=1

NBX

q=1

NCX

p=1

AkrBjqCip upqr =
NAX

r=1

Akr

"
NBX

q=1

Bjq

 
NCX

p=1

Cip upqr

!#
.

• The second form on the right implements the fast evaluation,

(A⌦ I ⌦ I)(I ⌦ B ⌦ I)(I ⌦ I ⌦ C).

• More generally, for w = (Ad ⌦ Ad�1 ⌦ · · ·⌦ A1)u, one has

wi1i2···id =
NdX

jd=1

Ad
idjd

2

4
Nd�1X

jd�1=1

Ad�1
id�1jd�1

 
· · ·

N1X

j1=1

A1
i1j1uj1j2···jd

!3

5 .

• If N1 = N2 = · · · = Nd = N , then the amount of data movement is Nd+ dN 2

loads for u and Ak and Nd stores (Nd = n).

• The number of operations is 2dNd · N = 2dnN = 2dn1+ 1
d , so we see that

these schemes are nearly linear in n for large values of d.

[See Deville, F. , Mund, 2002] 



Contractions Pictorially 

❑ 1D: 
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❑ 2D:  (A  B) U 
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Contractions Pictorially 

❑ 3D:  (A  B  C) U 

U 

C 

B A 

For d > 2, the amount of data 
(U) generally dominates the 
cost of loading the operators. 
 
Tensor-based operators are 
very fast in these cases. 



Fast Solvers:  Other Systems 



Fast Solver Example 

1
h2

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

4 �1 �1

�1 4 �1 �1

�1
. . .

. . .
. . .

. . .
. . . �1

. . .

�1 4 �1

�1 4 �1
. . .

�1 �1 4 �1
. . .

. . . �1
. . .

. . .
. . .

. . .
. . .

. . . �1
. . .

�1 �1 4
. . .

. . .
. . . �1

. . .
. . . �1

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . . �1

�1 4 �1

�1 �1 4
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . �1

�1 �1 4

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

| {z }

A2D

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

u11

u21

...

...
uM1

u12

u22

...

...

uM2

...

...

...

...

...

u1N

u2N

...

...

uMN

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

| {z }
u

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

f11
f21
...
...

fM1

f12

f22

...

...

fM2

...

...

...

...

...

f1N
f2N
...

...

fMN

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

| {z }

f

• Consider the system A2D u = f :

1 Poisson Equation

Our first boundary value problem will be the steady-state heat equation, which in two dimensions
has the form

�
✓

@

@x
k
@T

@x
+

@

@y
k
@T

@y

◆
= q000(x), plus BCs.

If the thermal conductivity k > 0 is constant, we can pull it outside of the partial derivatives and
divide both sides by k to yield the 2D Poisson equation

�
✓
@2u

@x2
+

@2u

@y2

◆
= f(x), plus BCs.

with f := q000/k and u := T . (We typically use u for scalar fields throughout the course for
notational convenience. Later, it will pair well with the set of test functions, denoted as v.)

The short-hand notation for the Poisson equation (1) is

�r2u = f(x) in⌦, u = u
b

on @⌦
D

, ru · n̂ = g on @⌦
N

,

which applies in any number of space dimensions d. Here, we’ve indicated a mixture of boundary
conditions: Dirichlet on @⌦

D

, where u is prescribed, and Neumann on @⌦
N

, where the normal
component of the gradient is prescribed. We take n̂ to be the outward pointing normal on the
domain boundary @⌦ = @⌦

D

S
@⌦

N

.

We will work with the Poisson equation and extensions throughout the course. At this point we
want to introduce some simple cases in order to understand optimal solution strategies in the 3D
case, which is arguably the most important in terms of compute cycles consumed throughout the
world.

1.1 Finite Di↵erences in 1D

The basic idea behind the finite di↵erence approach to solving di↵erential equations is to replace
the di↵erential operator with di↵erence operators at a set of n gridpoints. In 1D, it is natural to
order the points sequentially, as illustrated in Fig. 1. Here, we consider the two-point boundary
value problem

�d2u

dx2
= f(x), u(0) = u(1) = 0.



• Consider the system A2D u = f :

• This system is the 2D analog of the 1D finite-di↵erence approximation
to the heat equation.

• That is,

�

ui+1,j � 2ui,j + ui�1,j

�x

2
+

ui,j+1 � 2ui,j + ui,j�1

�y

2

�
= fij,

approximates the Poisson equation

�
✓
@

2
u

@x

2
+

@

2
u

@y

2

◆
= f(x, y),

with u = 0 on the boundary of the domain ⌦ = [0,M�x]⇥ [0, N�y].

• The details of the discretization are not our principal focus at this point.

• Here, we explore fast direct (noniterative) solution methods.

has a tensor-product structure, but it is not of the simple form

1 Poisson Equation

Our first boundary value problem will be the steady-state heat equation, which in two dimensions
has the form
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◆
= q000(x), plus BCs.

If the thermal conductivity k > 0 is constant, we can pull it outside of the partial derivatives and
divide both sides by k to yield the 2D Poisson equation
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+
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= f(x), plus BCs.



u
j�1

u
j

u
j+1

0 =: x0 x1 x2 · · · x
j�1 x

j

x
j+1 · · · x

n+1 := 1

Figure 1: Finite di↵erence grid on ⌦ := [0, 1].

�u
j+1 � 2u

j

+ u
j�1

h2
= f

j

, j = 1, . . . , n.

• This expression approximates the 1D di↵erential equation �d2u

dx2
= f(x), u(0) = u(L) = 0.

• Each equation j relates u
j�1, uj , and u

j+1 to f
j

.

• For this reason, the resulting matrix system is tridiagonal,

1
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BBBBBB@

f1
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...
f
n

1

CCCCCCA

| {z }
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.

which has the shorthand A
x

u = f , where u is the vector of unknowns and f the vector of data
values.

We will often simply use A instead of A
x

for notational convenience. Here, we explicitly call out
the x-coordinate association in preparation for the 2D development coming in the next section.

We list several attributes of A = A
x

that carry over to higher space dimensions.

1D Poisson System 



Properties of Ax 

• A
x

is symmetric, which implies it has real eigenvalues and an orthonormal set of eigenvectors
satisfying A

x

s

j

= �
j

s

j

, sT
j

s

i

= �
ij

, where the Kronecker �
ij

equals 1 when i = j and 0 when
i 6= j.

• A
x

is also positive definite, which means that xTA
x

x > 0 for all x 6= 0. It also implies �
j

> 0.
Symmetric positive definite (SPD) systems are particularly attractive because they can be
solved without pivoting using Cholesky factorization, A

x

= LLT , or iteratively using precon-
ditioned conjugate gradient (PCG) iteration. (For large sparse systems, PCG is typically the
best option.)

• A
x

is sparse. It has a fixed maximal number of nonzeros per row, which implies that the
total number of nonzeros in A

x

is linear in the problem size, n. We say that the storage cost
for A

x

is O(n), meaning that there exists a constant C independent of n such that the total
number of words to be stored is < Cn.

• A
x

is banded with bandwidth w = 1, which implies that k
ij

= 0 for all |i � j| > w. A
consequence is that the storage bound for the Cholesky factor L is < (w + 1)n. For the 1D
case with w=1, the storage for L is thus O(n). As we shall see, the work to compute the
factors is O(w2n).

• A�1 is completely full. We know this from the physics of the problem. Consider f ⌘ 0 save
for one point, where f

j

= 1 (i.e., f
j

is the nth column of the n⇥n identity matrix). This case
corresponds to a point heat source at x

j

and, as we know, the temperature will be nonzero
everywhere except at the endpoints. In fact, it will exhibit a linear decay from x

j

to the
boundaries. This is the exact Green’s function for both the continuous and the discrete case.
It’s an easy exercise to show that, for any matrix A = (a1 a2 . . .a

n

) we have a

j

= Ae

j

when
e

j

is the jth column of I. The preceding arguments establish that A�1 must be completely
full.

1.2 Poisson Equation in lR2

Our principal concern at this point is to understand the (typical) matrix structure that arises from
the 2D Poisson equation and, more importantly, its 3D counterpart. The essential features of this
structure will be similar for other discretizations (i.e., FEM, SEM), other PDEs, and other space
dimensions, so there is merit to starting with this relatively simple system.

The steady-state heat equation in two dimensions is:

�r · krT = q000(x, y), plus BCs.
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• Returning to the 2D case, we see that we can express A2D as (I
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• The first term is nothing other than �
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2 being applied to each row (j) of u
ij
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• The left and right terms take on forms that we’ve already seen...
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2 being applied to each row (j) of u
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and the

second term amounts to applying �
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2 to each column (i) on the grid.

• For h := �x = �y, the left and right terms take on forms that we’ve already seen.
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A2D = (I
y

⌦ A
x

) + (A
y

⌦ I
x

),

• Because the A2D is the sum of two systems, we can’t use
the tensor-product inverse directly.

• We instead use the similarity transformation introduced earlier.
Specifically, compute the (small) similarity transformations

A
x

= S
x

⇤
x

S�1
x

, A
y

=;S
y

⇤
y

S�1
y

,

• Noting that I
x

= S
x

I
x

S�1
x

and I
y

= S
y

I
y

S�1
y

, we have

A2D = (S
y

I
y

S�1
y

⌦ S
x

⇤
x

S�1
x

) + (S
y

⇤
y

S�1
y

⌦ S
x

I
x

S�1
x

)

= (S
y

⌦ S
x

)(I
y

⌦ ⇤
x

+ ⇤
y

⌦ I
x

)(S�1
y

⌦ S�1
x

)

= S⇤S�1.

• The inverse is then A�1
2D = S⇤�1S�1 (verify!), or

A�1
2D = (S

y

⌦ S
x

)(I
y

⌦ ⇤
x

+ ⇤
y

⌦ I
x

)�1(S�1
y

⌦ S�1
x

).

• Notice that ⇤ := (I
y

⌦ ⇤
x

+ ⇤
y

⌦ I
x

) is diagonal and easily inverted.
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• The solution to A2Du = f is thus

u = (S
y

⌦ S
x

)(I
y

⌦ ⇤
x

+ ⇤
y

⌦ I
x

)�1(S�1
y

⌦ S�1
x

)f .

• In fast matrix-matrix product form, this has a particularly compact ex-
pression:

U = S
x

[D � (S�1
x

FS�T

y

)]ST

y

,

whereW = D�V is used to denote pointwise multiplication of the entries
of the matrix pair (D, V ). That is, w

ij

:= d
ij

⇤ v
ij

.

• Note that, for the particular 1D A
x

and A
y

matrices in this example
that the eigenvectors are orthogonal. If we normalize the columns, then
S�1
x

= ST

x

(same for y).

• In the preceding expression, we used the fact that S�1
x

= ST

x

, assuming
that the columns of S

x

have been normalized.

• For symmetric matrices such as A
x

and A
y

, such an orthogonalization is
always possible. However, it is up to the user to ensure that the vectors
of the eigenvector matrix are indeed orthogonal and normalized.





Computing ||A||
2

and cond

2

(A).

• Recall:

cond(A) := ||A�1 || · ||A ||,

||A || := max

x 6=0

||Ax ||
||x || ,

||x ||
2

=

 
nX

i=1

x

2

i

! 1
2

=

p
x

T
x,

||x ||2
2

= x

T
x.

• From now on, drop the subscript “

2

”.

||x ||2 = x

T
x

||Ax ||2 = (Ax)

T
(Ax) = x

T
A

T
Ax.



• Matrix norm:

||A ||2 = max

x 6=0

||Ax ||2

||x ||2 ,

= max

x 6=0

x

T
A

T
Ax

x

T
x

= �

max

(A

T
A) =: spectral radius of (A

T
A).

• The symmetric positive definite matrix B := A

T
A has positive

eigenvalues.

• All symmetric matrices B have a complete set of orthonormal

eigenvectors satisfying

Bzj = �j zj, z

T
i zj = �ij =

⇢
1 i = j

0 i 6= j

.

• Note: If �i = �j, i 6= j, then can have z

T
i zj 6= 0, but we can

orthogonalize zi and zj so that

˜

z

T
i ˜zj = 0 and

B

˜

zi = �i˜zi �i = �j

B

˜

zj = �j˜zj.



• Assume eigenvalues are sorted with �

1

� �

2

� · · · � �n.

• For any x we have: x = c

1

z

1

+ c

2

z

2

+ · · · + cnzn.

• Let ||x || = 1.

• Want to find

max

||x ||=1

x

T
Bx

x

T
x

= max

||x ||=1

x

T
Bx.

• Note:

x
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nX

i=1

c
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2
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[1 � some positive (or zero) numbers] .

• Expression is maximized when c

2

= c

3

= · · · = cn = 0, =) c

1

= 1.

• Maximum value x

T
Bx = �

max

(B) = �

1

.

• Similarly, can show min x

T
Bx = �

min

(B) = �n.



• So, ||A||2 = max� �(A
T
A) = spectral radius of A

T
A.

• Now, ||A�1 ||2 = max

x 6=0

||A�1

x ||2

||x||2 .

• Let x = Ay:

||A�1 ||2 = max

y 6=0

||A�1

Ay ||2

||Ay||2 = max

y 6=0

||y ||2

||Ay||2 =

✓
min

y 6=0

||Ay ||2

||y||2

◆�1

=

1

�

min

(A

T
A)

.

• So, cond

2

(A) = ||A�1 || · ||A ||,

cond

2

(A) =

s
�

max

(A

T

A)

�

min

(A

T

A)

.
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Special Types of Linear Systems

Work and storage can often be saved in solving linear
system if matrix has special properties

Examples include

Symmetric : A = A

T , aij = aji for all i, j

Positive definite : xT
Ax > 0 for all x 6= 0

Band : aij = 0 for all |i� j| > �, where � is bandwidth of A

Sparse : most entries of A are zero
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Symmetric Positive Definite (SPD) Matrices 

❑  Very common in optimization and physical processes 

❑  Easiest example: 

❑  If  B is invertible, then   A := BTB  is SPD. 

❑  SPD systems of the form A x = b can be solved using 

❑  (stable) Cholesky factorization  A = LLT, or  

❑  iteratively with the most robust iterative solver, conjugate 
gradient iteration (generally with preconditioning, known as 
preconditioned conjugate gradients, PCG). 



Cholesky Factorization and SPD Matrices.

• A is SPD: A = AT
and x

TAx > 0 for all x 6= 0.

• Seek a symmetric factorization A =

˜L˜LT
(not LU).

– L not lower triangular but not unit lower triangular.

– That is, Ltii not necessarily 1.

• Alternatively, seek factorization A = LDLT
, where L is unit lower

triangular and D is diagonal.



• Start with LDLT
= A.

• Clearly, LU = A with U = DLT
.

– Follows from uniqueness of LU factorization.

– D is a row scaling of LT
and thus Dii = Uii.

– A property of SPD matrices is that all pivots are positive.

– (Another property is that you do not need to pivot.)

• Consider standard update step:

aij = aij � aik akj
akk

= aij � aik ajk
akk

• Usual multiplier column entries are lik = aik/akk.

• Usual pivot row entries are ukj = akj = ajk.

• So, if we factor 1/dkk = 1/akk out of U , we have:

dkk(akj/akk) = dkklkj
�! U = D(D�1U)

= DLT .

• For Cholesky, we have

A = LDLT
= L

p
D
p
DLT

=

˜L˜LT ,

with

˜L = L
p
D.
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D.



Existence, Uniqueness, and Conditioning
Solving Linear Systems

Special Types of Linear Systems
Software for Linear Systems

Symmetric Systems
Banded Systems
Iterative Methods

Symmetric Positive Definite Matrices

If A is symmetric and positive definite, then LU
factorization can be arranged so that U = L

T , which gives
Cholesky factorization

A = LL

T

where L is lower triangular with positive diagonal entries
Algorithm for computing it can be derived by equating
corresponding entries of A and LL

T

In 2⇥ 2 case, for example,

a11 a21

a21 a22

�
=


l11 0

l21 l22

� 
l11 l21

0 l22

�

implies

l11 =
p
a11, l21 = a21/l11, l22 =

q
a22 � l

2
21
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Cholesky Factorization (Text) 

After a row scaling, this is just standard LU decomposition, 
exploiting symmetry in the LU factors and A. ( U=LT ) 
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Cholesky Factorization

One way to write resulting general algorithm, in which
Cholesky factor L overwrites original matrix A, is

for j = 1 to n

for k = 1 to j � 1

for i = j to n

aij = aij � aik · ajk
end

end

ajj =
p
ajj

for k = j + 1 to n

akj = akj/ajj

end

end
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Cholesky Factorization, continued

Features of Cholesky algorithm for symmetric positive
definite matrices

All n square roots are of positive numbers, so algorithm is
well defined
No pivoting is required to maintain numerical stability
Only lower triangle of A is accessed, and hence upper
triangular portion need not be stored
Only n

3
/6 multiplications and similar number of additions

are required
Thus, Cholesky factorization requires only about half work
and half storage compared with LU factorization of general
matrix by Gaussian elimination, and also avoids need for
pivoting

< interactive example >
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Linear Algebra Very Short Summary 

 Main points: 

❑  Conditioning of matrix  cond(A) bounds our expected accuracy. 
❑  e.g., if cond(A) ~ 105  we expect at most  11 significant digits in x.  
❑ Why? 
❑ We start with IEEE double precision – 16 digits.  We lose 5 because 

condition (A) ~ 105, so we have 11 = 16-5. 
 
❑  Stable algorithm (i.e., pivoting) important to realizing this bound. 

❑ Some systems don’t need pivoting (e.g., SPD, diagonally dominant) 
❑ Unstable algorithms can sometimes be rescued with iterative 

refinement. 

❑  Costs: 
❑  Full matrix à O(n2) storage,  O(n3) work (wall-clock time) 
❑ Sparse or banded matrix, substantially less. 



❑  The following slides present the book’s derivation of the LU 
factorization process. 

❑  I’ll highlight a few of them that show the equivalence between the 
outer product approach and the elementary elimination matrix 
approach. 
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Example: Triangular Linear System

2

4
2 4 �2

0 1 1

0 0 4

3

5

2

4
x1

x2

x3

3

5
=

2

4
2

4

8

3

5

Using back-substitution for this upper triangular system,
last equation, 4x3 = 8, is solved directly to obtain x3 = 2

Next, x3 is substituted into second equation to obtain
x2 = 2

Finally, both x3 and x2 are substituted into first equation to
obtain x1 = �1
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Elimination

To transform general linear system into triangular form, we
need to replace selected nonzero entries of matrix by
zeros

This can be accomplished by taking linear combinations of
rows

Consider 2-vector a =


a1

a2

�

If a1 6= 0, then


1 0

�a2/a1 1

� 
a1

a2

�
=


a1

0

�
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Elementary Elimination Matrices

More generally, we can annihilate all entries below kth
position in n-vector a by transformation

Mka =

2

666666664

1 · · · 0 0 · · · 0

... . . . ...
... . . . ...

0 · · · 1 0 · · · 0

0 · · · �mk+1 1 · · · 0

... . . . ...
... . . . ...

0 · · · �mn 0 · · · 1

3

777777775

2

666666664

a1
...
ak

ak+1
...
an

3

777777775

=

2

666666664

a1
...
ak

0

...
0

3

777777775

where mi = ai/ak, i = k + 1, . . . , n

Divisor ak, called pivot, must be nonzero
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Elementary Elimination Matrices, continued

Matrix Mk, called elementary elimination matrix, adds
multiple of row k to each subsequent row, with multipliers

mi chosen so that result is zero

Mk is unit lower triangular and nonsingular

Mk = I �mke
T
k , where mk = [0, . . . , 0,mk+1, . . . ,mn]

T

and ek is kth column of identity matrix

M

�1
k = I +mke

T
k , which means M

�1
k = Lk is same as

Mk except signs of multipliers are reversed
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Elementary Elimination Matrices, continued

If Mj , j > k, is another elementary elimination matrix, with
vector of multipliers mj , then

MkMj = I �mke
T
k �mje

T
j +mke

T
kmje

T
j

= I �mke
T
k �mje

T
j

which means product is essentially “union,” and similarly
for product of inverses, LkLj
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Comment on update step and mkeT
k 

❑  Recall, v = C w 2 span{C}. 
❑   )  V = ( v1 v2…vn) = C ( w1 w2…wn) 2 span{C}. 

 

❑  If C = c,  i.e., C is a column vector and therefore of rank 1, 
then V is in span{C} and is of rank 1. 

❑  All columns of V are multiples of c. 

❑  Thus,  W = c rT  is an n x n matrix of rank 1.   
❑  All columns are multiples of the first column and 

❑  All rows are multiples of the first row. 
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Elementary Elimination Matrices, continued

Matrix Mk, called elementary elimination matrix, adds
multiple of row k to each subsequent row, with multipliers

mi chosen so that result is zero

Mk is unit lower triangular and nonsingular

Mk = I �mke
T
k , where mk = [0, . . . , 0,mk+1, . . . ,mn]

T

and ek is kth column of identity matrix

M

�1
k = I +mke

T
k , which means M

�1
k = Lk is same as

Mk except signs of multipliers are reversed
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Example: Elementary Elimination Matrices

For a =

2

4
2

4

�2

3

5,

M1a =

2

4
1 0 0

�2 1 0

1 0 1

3

5

2

4
2

4

�2

3

5
=

2

4
2

0

0

3

5

and

M2a =

2

4
1 0 0

0 1 0

0 1/2 1

3

5

2

4
2

4

�2

3

5
=

2

4
2

4

0

3

5
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Example, continued

Note that

L1 = M

�1
1 =

2

4
1 0 0

2 1 0

�1 0 1

3

5
, L2 = M

�1
2 =

2

4
1 0 0

0 1 0

0 �1/2 1

3

5

and

M1M2 =

2

4
1 0 0

�2 1 0

1 1/2 1

3

5
, L1L2 =

2

4
1 0 0

2 1 0

�1 �1/2 1

3

5
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Gaussian Elimination

To reduce general linear system Ax = b to upper
triangular form, first choose M1, with a11 as pivot, to
annihilate first column of A below first row

System becomes M1Ax = M1b, but solution is unchanged

Next choose M2, using a22 as pivot, to annihilate second
column of M1A below second row

System becomes M2M1Ax = M2M1b, but solution is still
unchanged

Process continues for each successive column until all
subdiagonal entries have been zeroed
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Gaussian Elimination

To reduce general linear system Ax = b to upper
triangular form, first choose M1, with a11 as pivot, to
annihilate first column of A below first row

System becomes M1Ax = M1b, but solution is unchanged

Next choose M2, using a22 as pivot, to annihilate second
column of M1A below second row

System becomes M2M1Ax = M2M1b, but solution is still
unchanged

Process continues for each successive column until all
subdiagonal entries have been zeroed

Michael T. Heath Scientific Computing 40 / 88

Technically, this should be a’22 , the 2-2 entry in  A’ := M1A.  
Thus, we don’t know all the pivots in advance. 
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Gaussian Elimination, continued

Resulting upper triangular linear system

Mn�1 · · ·M1Ax = Mn�1 · · ·M1b

MAx = Mb

can be solved by back-substitution to obtain solution to
original linear system Ax = b

Process just described is called Gaussian elimination
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LU Factorization

Product LkLj is unit lower triangular if k < j, so

L = M

�1
= M

�1
1 · · ·M�1

n�1 = L1 · · ·Ln�1

is unit lower triangular

By design, U = MA is upper triangular

So we have
A = LU

with L unit lower triangular and U upper triangular

Thus, Gaussian elimination produces LU factorization of
matrix into triangular factors
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LU Factorization, continued

Having obtained LU factorization, Ax = b becomes
LUx = b, and can be solved by forward-substitution in
lower triangular system Ly = b, followed by
back-substitution in upper triangular system Ux = y

Note that y = Mb is same as transformed right-hand side
in Gaussian elimination

Gaussian elimination and LU factorization are two ways of
expressing same solution process
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Example: Gaussian Elimination

Use Gaussian elimination to solve linear system

Ax =

2

4
2 4 �2

4 9 �3

�2 �3 7

3

5

2

4
x1

x2

x3

3

5
=

2

4
2

8

10

3

5
= b

To annihilate subdiagonal entries of first column of A,

M1A =

2

4
1 0 0

�2 1 0

1 0 1

3

5

2

4
2 4 �2

4 9 �3

�2 �3 7

3

5
=

2

4
2 4 �2

0 1 1

0 1 5

3

5
,

M1b =

2

4
1 0 0

�2 1 0

1 0 1

3

5

2

4
2

8

10

3

5
=

2

4
2

4

12

3

5
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Example, continued

To annihilate subdiagonal entry of second column of M1A,

M2M1A =

2

4
1 0 0

0 1 0

0 �1 1

3

5

2

4
2 4 �2

0 1 1

0 1 5

3

5
=

2

4
2 4 �2

0 1 1

0 0 4

3

5
= U ,

M2M1b =

2

4
1 0 0

0 1 0

0 �1 1

3

5

2

4
2

4

12

3

5
=

2

4
2

4

8

3

5
= Mb
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Example, continued

We have reduced original system to equivalent upper
triangular system

Ux =

2

4
2 4 �2

0 1 1

0 0 4

3

5

2

4
x1

x2

x3

3

5
=

2

4
2

4

8

3

5
= Mb

which can now be solved by back-substitution to obtain

x =

2

4
�1

2

2

3

5
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Example, continued

To write out LU factorization explicitly,

L1L2 =

2

4
1 0 0

2 1 0

�1 0 1

3

5

2

4
1 0 0

0 1 0

0 1 1

3

5
=

2

4
1 0 0

2 1 0

�1 1 1

3

5
= L

so that

A =

2

4
2 4 �2

4 9 �3

�2 �3 7

3

5
=

2

4
1 0 0

2 1 0

�1 1 1

3

5

2

4
2 4 �2

0 1 1

0 0 4

3

5
= LU
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