- Sherman Morrison Formula

Solving Modified Problems

- If right-hand side of linear system changes but matrix does not, then LU factorization need not be repeated to solve new system
- Only forward- and back-substitution need be repeated for new right-hand side
- This is substantial savings in work, since additional triangular solutions cost only $\mathcal{O}\left(n^{2}\right)$ work, in contrast to $\mathcal{O}\left(n^{3}\right)$ cost of factorization

Sherman-Morrison Formula

- Sometimes refactorization can be avoided even when matrix does change
- Sherman-Morrison formula gives inverse of matrix resulting from rank-one change to matrix whose inverse is already known

$$
\left(\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{T}\right)^{-1}=\boldsymbol{A}^{-1}+\boldsymbol{A}^{-1} \boldsymbol{u}\left(1-\boldsymbol{v}^{T} \boldsymbol{A}^{-1} \boldsymbol{u}\right)^{-1} \boldsymbol{v}^{T} \boldsymbol{A}^{-1}
$$

where \boldsymbol{u} and \boldsymbol{v} are n-vectors

- Evaluation of formula requires $\mathcal{O}\left(n^{2}\right)$ work (for matrix-vector multiplications) rather than $\mathcal{O}\left(n^{3}\right)$ work required for inversion

Rank-One Updating of Solution

- To solve linear system $\left(\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{T}\right) \boldsymbol{x}=\boldsymbol{b}$ with new matrix, use Sherman-Morrison formula to obtain

$$
\begin{aligned}
\boldsymbol{x} & =\left(\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{T}\right)^{-1} \boldsymbol{b} \\
& =\boldsymbol{A}^{-1} \boldsymbol{b}+\boldsymbol{A}^{-1} \boldsymbol{u}\left(1-\boldsymbol{v}^{T} \boldsymbol{A}^{-1} \boldsymbol{u}\right)^{-1} \boldsymbol{v}^{T} \boldsymbol{A}^{-1} \boldsymbol{b}
\end{aligned}
$$

which can be implemented by following steps

- Solve $\boldsymbol{A} \boldsymbol{z}=\boldsymbol{u}$ for \boldsymbol{z}, so $\boldsymbol{z}=\boldsymbol{A}^{-1} \boldsymbol{u}$
- Solve $\boldsymbol{A} \boldsymbol{y}=\boldsymbol{b}$ for \boldsymbol{y}, so $\boldsymbol{y}=\boldsymbol{A}^{-1} \boldsymbol{b}$
- Compute $\boldsymbol{x}=\boldsymbol{y}+\left(\left(\boldsymbol{v}^{T} \boldsymbol{y}\right) /\left(1-\boldsymbol{v}^{T} \boldsymbol{z}\right)\right) \boldsymbol{z}$
- If \boldsymbol{A} is already factored, procedure requires only triangular solutions and inner products, so only $\mathcal{O}\left(n^{2}\right)$ work and no explicit inverses

Example: Rank-One Updating of Solution

- Consider rank-one modification

$$
\left[\begin{array}{rrr}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
2 \\
8 \\
10
\end{array}\right]
$$

(with 3, 2 entry changed) of system whose LU factorization was computed in earlier example

- One way to choose update vectors is

$$
\boldsymbol{u}=\left[\begin{array}{r}
0 \\
0 \\
-2
\end{array}\right] \quad \text { and } \quad \boldsymbol{v}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Original Matrix
$\left[\begin{array}{rrr}2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7\end{array}\right]$
so matrix of modified system is $\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{T}$

Example, continued

- Using LU factorization of \boldsymbol{A} to solve $\boldsymbol{A z}=\boldsymbol{u}$ and $\boldsymbol{A} \boldsymbol{y}=\boldsymbol{b}$,

$$
\boldsymbol{z}=\left[\begin{array}{r}
-3 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right] \quad \text { and } \quad \boldsymbol{y}=\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]
$$

- Final step computes updated solution

Q: Under what circumstances could the

- We have thus computed solution to modified system without factoring modified matrix

Sherman Morrison

[1] Solve $A \tilde{\mathbf{x}}=\tilde{\mathbf{b}}$:
$A \longrightarrow L U\left(O\left(n^{3}\right)\right.$ work $)$
Solve $L \tilde{\mathbf{y}}=\tilde{\mathbf{b}}$,
Solve $U \tilde{\mathbf{x}}=\tilde{\mathbf{y}}\left(O\left(n^{2}\right)\right.$ work $)$.
[2] New problem:

$$
\left(A-\mathbf{u v}^{T}\right) \mathbf{x}=\mathbf{b} . \quad(\text { different } \mathbf{x} \text { and } \mathbf{b})
$$

Key Idea:

- $\left(A-\mathbf{u v}^{T}\right) \mathbf{x}$ differs from $A \mathbf{x}$ by
only a small amount of information.
- Rewrite as: $A \mathbf{x}+\mathbf{u} \gamma=\mathbf{b}$

$$
\gamma:=-\mathbf{v}^{T} \mathbf{x} \longleftrightarrow \mathbf{v}^{T} \mathbf{x}+\gamma=0
$$

Sherman Morrison

Extended system:

$$
\begin{aligned}
A \mathbf{x}+\gamma \mathbf{u} & =\mathbf{b} \\
\mathbf{v}^{T} \mathbf{x}+\gamma & =0
\end{aligned}
$$

Sherman Morrison

Extended system:

$$
\begin{aligned}
A \mathbf{x}+\gamma \mathbf{u} & =\mathbf{b} \\
\mathbf{v}^{T} \mathbf{x}+\gamma & =0
\end{aligned}
$$

In matrix form:

$$
\left[\begin{array}{cc}
A & \mathbf{u} \\
\mathbf{v}^{T} & 1
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{0}
$$

Sherman Morrison

Extended system:

$$
\begin{aligned}
A \mathbf{x}+\gamma \mathbf{u} & =\mathbf{b} \\
\mathbf{v}^{T} \mathbf{x}+\gamma & =0
\end{aligned}
$$

In matrix form:

$$
\left[\begin{array}{cc}
A & \mathbf{u} \\
\mathbf{v}^{T} & 1
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{0}
$$

Eliminate for γ :

$$
\left[\begin{array}{cc}
A & \mathbf{u} \\
0 & 1-\mathbf{v}^{T} A^{-1} \mathbf{u}
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{-\mathbf{v}^{T} A^{-1} \mathbf{b}}
$$

Sherman Morrison

Extended system:

$$
\begin{aligned}
A \mathbf{x}+\gamma \mathbf{u} & =\mathbf{b} \\
\mathbf{v}^{T} \mathbf{x}+\gamma & =0
\end{aligned}
$$

In matrix form:

$$
\left[\begin{array}{cc}
A & \mathbf{u} \\
\mathbf{v}^{T} & 1
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{0}
$$

Eliminate for γ :

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & \mathbf{u} \\
0 & 1-\mathbf{v}^{T} A^{-1} \mathbf{u}
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{-\mathbf{v}^{T} A^{-1} \mathbf{b}}} \\
& \gamma=-\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1} \mathbf{b}
\end{aligned}
$$

Sherman Morrison

Extended system:

$$
\begin{aligned}
A \mathbf{x}+\gamma \mathbf{u} & =\mathbf{b} \\
\mathbf{v}^{T} \mathbf{x}+\gamma & =0
\end{aligned}
$$

In matrix form:

$$
\left[\begin{array}{cc}
A & \mathbf{u} \\
\mathbf{v}^{T} & 1
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{0}
$$

Eliminate for γ :

$$
\begin{array}{r}
{\left[\begin{array}{cc}
A & \mathbf{u} \\
0 & 1-\mathbf{v}^{T} A^{-1} \mathbf{u}
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{-\mathbf{v}^{T} A^{-1} \mathbf{b}}} \\
\gamma=-\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1} \mathbf{b} \\
\mathbf{x}=A^{-1}(\mathbf{b}-\mathbf{u} \gamma)=A^{-1}\left[\mathbf{b}+\mathbf{u}\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1} \mathbf{b}\right]
\end{array}
$$

Sherman Morrison

Extended system:

$$
\begin{aligned}
A \mathbf{x}+\gamma \mathbf{u} & =\mathbf{b} \\
\mathbf{v}^{T} \mathbf{x}+\gamma & =0
\end{aligned}
$$

In matrix form:

$$
\left[\begin{array}{cc}
A & \mathbf{u} \\
\mathbf{v}^{T} & 1
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{0}
$$

Eliminate for γ :

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & \mathbf{u} \\
0 & 1-\mathbf{v}^{T} A^{-1} \mathbf{u}
\end{array}\right]\binom{\mathbf{x}}{\gamma}=\binom{\mathbf{b}}{-\mathbf{v}^{T} A^{-1} \mathbf{b}}} \\
& \gamma=-\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1} \mathbf{b} \\
& \mathbf{x}=A^{-1}(\mathbf{b}-\mathbf{u} \gamma)=A^{-1}\left[\mathbf{b}+\mathbf{u}\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1} \mathbf{b}\right] \\
& \left(A-\mathbf{u v}^{T}\right)^{-1}=A^{-1}+A^{-1} \mathbf{u}\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1} .
\end{aligned}
$$

Sherman Morrison: Potential Singularity

- Consider the modified system: $\left(A-\mathbf{u v}^{T}\right) \mathbf{x}=\mathbf{b}$.
- The solution is

$$
\begin{aligned}
\mathbf{x} & =\left(A-\mathbf{u} \mathbf{v}^{T}\right)^{-1} \mathbf{b} \\
& =\left[I+A^{-1} \mathbf{u}\left(1-\mathbf{v}^{T} A^{-1} \mathbf{u}\right)^{-1} \mathbf{v}^{T} A^{-1}\right] A^{-1} \mathbf{b}
\end{aligned}
$$

- If $1-\mathbf{v}^{T} A^{-1} \mathbf{u}=0$, failure.
- Why?

Sherman Morrison: Potential Singularity

- Let $\tilde{A}:=\left(A-\mathbf{u v}^{T}\right)$ and consider,

$$
\begin{aligned}
\tilde{A} A^{-1} & =\left(A-\mathbf{u v}^{T}\right) A^{-1} \\
& =\left(I-\mathbf{u v}^{T} A^{-1}\right) .
\end{aligned}
$$

- Look at the product $\tilde{A} A^{-1} \mathbf{u}$,

$$
\begin{aligned}
\tilde{A} A^{-1} \mathbf{u} & =\left(I-\mathbf{u v}^{T} A^{-1}\right) \mathbf{u} \\
& =\mathbf{u}-\mathbf{u} \mathbf{v}^{T} A^{-1} \mathbf{u}
\end{aligned}
$$

- If $\mathbf{v}^{T} A^{-1} \mathbf{u}=1$, then

$$
\tilde{A} A^{-1} \mathbf{u}=\mathbf{u}-\mathbf{u}=0,
$$

which means that \tilde{A} is singular since we assume that A^{-1} exists.

- Thus, an unfortunate choice of \mathbf{u} and \mathbf{v} can lead to a singular modified matrix and this singularity is indicated by $\mathbf{v}^{T} A^{-1} \mathbf{u}=1$.

Tensor Product Matrics

The tensor- (or Kronecker-) product of matrices A and B is denoted as

$$
C=A \otimes B
$$

and is defined as the block matrix having entries

$$
C:=\left(\begin{array}{ccccc}
a_{11} B & a_{12} B & \cdots & \cdots & a_{1 n} B \\
a_{21} B & a_{22} B & \cdots & \cdots & a_{2 n} B \\
\vdots & \vdots & & & \vdots \\
a_{m 1} B & a_{m 2} B & \cdots & \cdots & a_{m n} B
\end{array}\right)
$$

Tensor-Product Matrices

Tensor-product forms arise in many applications, including
\square Density Functional Theory (DFT) in computational chemistry (e.g., 7-dimensional tensors)

- Partial differential equations

Image processing (e.g., multidimensional FFTs)

- Machine learning (ML)
\square Their importance in ML/AI applications is such that software developers and computer architects are now designing fast tensor-contraction engines to further accelerate tensor-product manipulations.

Tensor-Product Matrices

\square In Computer Vision, there is even a conference series on this topic.

- Our interest here is to understand how tensor-product forms can yield very rapid direct solvers for systems of the form $A \mathbf{x}=\mathbf{b}$.
- There are two ways in which tensor-product-based matrices for the form $C=A \otimes B$ accelerate computation:

1. They can be used to effect very fast matrix-vector products.
2. They can be used to effect very fast matrix-matrix products.

- To begin, we focus on the matrix-matrix products, which is a bit easier to understand.

Product Rule for Tensor-Product Matrices

- Assume that the matrix pairs (D, A) and (E, B) are dimensioned such that the products $D A$ and $E B$ are well-defined.
- If

$$
C:=A \otimes B \quad \text { and } \quad F:=D \otimes E
$$

then, the matrix product $F C$ is given by

$$
\begin{aligned}
F C & =(D \otimes E)(A \otimes B) \\
& =D A \otimes E B
\end{aligned}
$$

- This result follows from the definition of the Kronecker product, \otimes, and has many important consequences.

Uses of the Product Rule: Inverses

$$
(D \otimes E)(A \otimes B)=D A \otimes E B
$$

- If $C:=A \otimes B$, then

$$
C^{-1}:=A^{-1} \otimes B^{-1}
$$

- Specifically,

$$
\begin{aligned}
C^{-1} C & =\left(A^{-1} \otimes B^{-1}\right)(A \otimes B)=A^{-1} A \otimes B^{-1} B \\
& =I_{A} \otimes I_{B}=I
\end{aligned}
$$

where I_{A} and I_{B} are identity matrices equal in size to A and B, repsectively.

- Thus, the inverse of C is the tensor-product of two much smaller matrices, A and B.

Uses of the Product Rule: Inverses

- Example:
- Suppose A and B are full $N \times N$ matrices and $C=A \otimes B$ is $n \times n$ with $n=N^{2}$.
- The $L U$ factorization of C is

$$
L U=\left(L_{A} \otimes L_{B}\right)\left(U_{A} \otimes U_{B}\right)
$$

- What is the cost of computing the tensor product form of $L U$, rather than $L U$ directly as a function of N ?
- What is the ratio (full time over tensor-product time) when $N=100$?

The Curse of Dimensionality

- The advantage of the tensor-product representation increases with higher dimensions.
- Suppose A_{j} is $N \times N$, for $j=1, \ldots, d$, and

$$
C=A_{d} \otimes A_{d-1} \otimes \cdots \otimes A_{1}
$$

with inverse

$$
C^{-1}=A_{d}^{-1} \otimes A_{d-1}^{-1} \otimes \cdots \otimes A_{1}^{-1}
$$

- Tensor-product forms are critical for efficient computation in many largedimensional scientific problems.
- Application of the tensor operator, however, will take more work, since we obviously have to touch $n=10^{7}$ entries. We'll see in a moment that the cost of application is $\approx 2 d \cdot n \cdot n^{\frac{1}{d}} \ll O\left(n^{3}\right)$.
- Consider $d=7$ and $N=10$.
- The number of nonzeros in C (if formed) is N^{14}, which is 800 TB and would cost you about $\$ 10,000$ in disk drives.
- Factorization of the full form will take about 10 minutes on the world's fastest computer in 2021, or about 600 years on my mac.
- The factorization cost for the tensor product form is ≈ 5000 operations. A blink of the eye on your laptop.
- Application of C^{-1} in tensor form will require about $2 \cdot 7 \cdot 10^{8} \approx 1.4 \times 10^{9}$ operations, which is less than a second if you sustain >1 GFLOPS on your computer.
- With the significant reduction of memory references and operations, the cost of application of C^{-1} in the high-rank tensor case is typically dominated by the cost of transfering the right-hand side and solution vectors from and to main memory. That is, the cost scales like $c n=c N^{d}$, where c is some measure of the inverse memory bandwidth.
Thus, high-rank tensors transform a compute-bound problem to a memorybound one.

Uses of the Product Rule: Eigenvalues

- Suppose that A is an $N \times N$ matrix with the similarity transformation (Chapter 4),

$$
A=S \Lambda S^{-1}
$$

where $S=\left[\mathbf{s}_{1} \mathbf{s}_{2} \cdots \mathbf{s}_{N}\right]$ is the (full) matrix of eigenvectors of A and $\Lambda=\operatorname{diag}\left(\lambda_{i}\right)$ is the diagonal matrix of corresponding eigenvalues.
That is, $A \mathbf{s}_{i}=\mathbf{s}_{i} \lambda_{i}$.

- Let $T \mathcal{M} T^{-1}$ denote the similarity transformation for B, with eigenvector matrix T and eigenvalue matrix \mathcal{M}.
- Then the similarity transformation for $C=A \otimes B$ is

$$
\begin{aligned}
A \otimes B & =\left(S \Lambda S^{-1}\right) \otimes\left(T \mathcal{M} T^{-1}\right) \\
& =(S \otimes T)(\Lambda \otimes \mathcal{M})\left(S^{-1} \otimes T^{-1}\right) \\
& =U \mathcal{N} U^{-1}
\end{aligned}
$$

- Thus, we have diagonalized C by diagonalizing two smaller systems A and B.

Fast Matrix-Vector Products

Q Q What is the cost of Cu , vs. the fast form for $(\mathrm{A} \otimes \mathrm{B}) \mathbf{u}$?

Fast Matrix-Vector Products via Tensor Contraction

- Consider evaluation of $\mathbf{w}=C \mathbf{v}:=(A \otimes B) \mathbf{u}$.
- To avoid extra work and storage, we evaluate the product as

$$
\mathbf{w}=(A \otimes I)(I \otimes B) \mathbf{u}
$$

or

$$
\begin{aligned}
\mathbf{v} & =(I \otimes B) \mathbf{u} \\
\mathbf{w} & =(A \otimes I) \mathbf{u}
\end{aligned}
$$

- Start with $\mathbf{v}=(I \otimes B) \mathbf{u}$.

- In $(I \otimes B) \mathbf{u}, B$ is applied M times to vectors of length M.
- We can reshape the vector \mathbf{u} and output vector \mathbf{v} to be $M \times N$ matrices, such that $\mathbf{v}=(I \otimes B) \mathbf{u}$ is computed as a matrix-matrix product:
- It is convenient to relabel the indices on \mathbf{u} and \mathbf{v} to match the contraction indices of the tensor operator.
- Specifically, let $\mathbf{u}=\left(u_{1} u_{2} \ldots u_{n}\right)^{T}$ and U be the matrix form with entries

$$
U_{i j}=u_{\hat{\imath}}, \quad \text { for } \hat{\imath}:=i+M(j-1)
$$

- Then, with the same mapping for $\mathbf{b} \longrightarrow V$, we can write

$$
V=B U
$$

- In index form (convenient for later...)

$$
V_{i j}=\sum_{p=1}^{M} B_{i p} U_{p j}
$$

- The next step is to compute $\mathbf{w}=(A \otimes I) \mathbf{v}$:

- Here, the picture is less obvious than for the block-diagonal $(I \otimes B)$ case.
- To make things simpler, we've enumerated \mathbf{v} and \mathbf{w} with the two-index subscript in the preceding slide such that they are already in tensor form.
- With a bit of inspection, it becomes clear that $\mathbf{w}=(A \otimes I) \mathbf{v}$ is given by a contraction that is similar to the preceding one. Namely,

$$
W_{i j}=\sum_{q=1}^{M} A_{j q} V_{i q}=\sum_{q=1}^{M} A_{q j}^{T} V_{i q}=\sum_{q=1}^{M} V_{i q} A_{q j}^{T}
$$

- The last form is a proper matrix-matrix product of the form $W=V A^{T}$.
- The complete contraction evaluation, $\mathbf{w}=(A \otimes B) \mathbf{u}$, for 2D (i.e., rank-2) tensors is thus simply,

$$
W=B U A^{T} .
$$

- Contractions for higher-rank tensors take on a similar form.
- For example, a rank-3 contraction $\mathbf{w}=(A \otimes B \otimes C) \mathbf{u}$ is evaluated as

$$
w_{i j k}=\sum_{r=1}^{N_{A}} \sum_{q=1}^{N_{B}} \sum_{p=1}^{N_{C}} A_{k r} B_{j q} C_{i p} u_{p q r}=\sum_{r=1}^{N_{A}} A_{k r}\left[\sum_{q=1}^{N_{B}} B_{j q}\left(\sum_{p=1}^{N_{C}} C_{i p} u_{p q r}\right)\right]
$$

- The second form on the right implements the fast evaluation,

$$
(A \otimes I \otimes I)(I \otimes B \otimes I)(I \otimes I \otimes C)
$$

[See Deville, F. , Mund, 2002]

- More generally, for $\mathbf{w}=\left(A^{d} \otimes A^{d-1} \otimes \cdots \otimes A^{1}\right) \mathbf{u}$, one has

$$
w_{i_{1} i_{2} \cdots i_{d}}=\sum_{j_{d}=1}^{N_{d}} A_{i_{d} j_{d}}^{d}\left[\sum_{j_{d-1}=1}^{N_{d-1}} A_{i_{d-1} j_{d-1}}^{d-1}\left(\cdots \sum_{j_{1}=1}^{N_{1}} A_{i_{1} j_{1}}^{1} u_{j_{1} j_{2} \cdots j_{d}}\right)\right]
$$

- If $N_{1}=N_{2}=\cdots=N_{d}=N$, then the amount of data movement is $N^{d}+d N^{2}$ loads for \mathbf{u} and A^{k} and N^{d} stores $\left(N^{d}=n\right)$.
- The number of operations is $2 d N^{d} \cdot N=2 d n N=2 d n^{1+\frac{1}{d}}$, so we see that these schemes are nearly linear in n for large values of d.

Contractions Pictorially

-1D:

Contractions Pictorially

-2D: $(\boldsymbol{A} \otimes \boldsymbol{B}) \boldsymbol{U}$

Contractions Pictorially

3D: $\boldsymbol{(A} \otimes \boldsymbol{B} \otimes \boldsymbol{C}) \boldsymbol{U}$

For $d>2$, the amount of data (U) generally dominates the cost of loading the operators.

Tensor-based operators are very fast in these cases.

Fast Solvers: Other Systems

Fast Solver Example

- Consider the system $A_{2 D} \mathbf{u}=\mathbf{f}$:

- This system is the 2D analog of the 1D finite-difference approximation to the heat equation.
- That is,

$$
-\left[\frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{\Delta x^{2}}+\frac{u_{i, j+1}-2 u_{i, j}+u_{i, j-1}}{\Delta y^{2}}\right]=f_{i j},
$$

approximates the Poisson equation

$$
-\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=f(x, y)
$$

with $u=0$ on the boundary of the domain $\Omega=[0, M \Delta x] \times[0, N \Delta y]$.

- The details of the discretization are not our principal focus at this point.
- Here, we explore fast direct (noniterative) solution methods.

1D Poisson System

Figure 1: Finite difference grid on $\Omega:=[0,1]$.

$$
-\frac{u_{j+1}-2 u_{j}+u_{j-1}}{h^{2}}=f_{j}, \quad j=1, \ldots, n .
$$

- This expression approximates the 1D differential equation $-\frac{d^{2} u}{d x^{2}}=f(x), u(0)=u(L)=0$.
- Each equation j relates u_{j-1}, u_{j}, and u_{j+1} to f_{j}.
- For this reason, the resulting matrix system is tridiagonal,

$$
\frac{1}{h^{2}} \underbrace{}_{A_{x}}\left(\begin{array}{rrrrr}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & \ddots & \ddots & \\
& & \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right) \underbrace{\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
\vdots \\
u_{n}
\end{array}\right)}_{\mathbf{u}}=\underbrace{\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
\vdots \\
f_{n}
\end{array}\right)}_{\mathbf{f}} .
$$

Properties of A_{x}

- A_{x} is symmetric, which implies it has real eigenvalues and an orthonormal set of eigenvectors satisfying $A_{x} \mathbf{s}_{j}=\lambda_{j} \mathbf{s}_{j}, \mathbf{s}_{j}^{T} \mathbf{s}_{i}=\delta_{i j}$, where the Kronecker $\delta_{i j}$ equals 1 when $i=j$ and 0 when $i \neq j$.
- A_{x} is also positive definite, which means that $\mathbf{x}^{T} A_{x} \mathbf{x}>0$ for all $\mathbf{x} \neq 0$. It also implies $\lambda_{j}>0$. Symmetric positive definite (SPD) systems are particularly attractive because they can be solved without pivoting using Cholesky factorization, $A_{x}=L L^{T}$, or iteratively using preconditioned conjugate gradient (PCG) iteration. (For large sparse systems, PCG is typically the best option.)
- A_{x} is sparse. It has a fixed maximal number of nonzeros per row, which implies that the total number of nonzeros in A_{x} is linear in the problem size, n. We say that the storage cost for A_{x} is $O(n)$, meaning that there exists a constant C independent of n such that the total number of words to be stored is $<C n$.
- A_{x} is banded with bandwidth $w=1$, which implies that $k_{i j}=0$ for all $|i-j|>w$. A consequence is that the storage bound for the Cholesky factor L is $<(w+1) n$. For the 1D case with $w=1$, the storage for L is thus $O(n)$. As we shall see, the work to compute the factors is $O\left(w^{2} n\right)$.
- Returning to the 2D case, we see that we can express $A_{2 D}$ as $\left(I_{y} \otimes A_{x}\right)+\left(A_{y} \otimes I_{x}\right)$.
- The first term is nothing other than $\frac{\delta^{2}}{\delta x^{2}}$ being applied to each row (j) of $u_{i j}$ and the second term amounts to applying $\frac{\delta^{2}}{\delta y^{2}}$ to each column (i) on the grid.
- For $h:=\Delta x=\Delta y$, the left and right terms take on forms that we've already seen.

$$
\begin{aligned}
A_{2 D} & =\left(\begin{array}{cccc}
A_{x} & & & \\
& A_{x} & & \\
& & \ddots & \\
& & & A_{x}
\end{array}\right)+\frac{1}{h^{2}}\left(\begin{array}{cccc}
2 I_{x} & -I_{x} & & \\
-I_{x} & 2 I_{x} & \ddots & \\
& \ddots & \ddots & -I_{x} \\
& & -I_{x} & 2 I_{x}
\end{array}\right) \\
& =\left(I_{y} \otimes A_{x}\right)+\left(A_{y} \otimes I_{x}\right)
\end{aligned}
$$

$$
\frac{\partial^{2} u}{\partial x^{2}} \text { term }
$$

$$
\frac{\partial^{2} u}{\partial y^{2}} \text { term }
$$

$$
A_{2 D}=\left(I_{y} \otimes A_{x}\right)+\left(A_{y} \otimes I_{x}\right),
$$

- Because the $A_{2 D}$ is the sum of two systems, we can't use the tensor-product inverse directly.
- We instead use the similarity transformation introduced earlier. Specifically, compute the (small) similarity transformations

$$
A_{x}=S_{x} \Lambda_{x} S_{x}^{-1}, \quad A_{y}=; S_{y} \Lambda_{y} S_{y}^{-1}
$$

- Noting that $I_{x}=S_{x} I_{x} S_{x}^{-1}$ and $I_{y}=S_{y} I_{y} S_{y}^{-1}$, we have

$$
\begin{aligned}
A_{2 D} & =\left(S_{y} I_{y} S_{y}^{-1} \otimes S_{x} \Lambda_{x} S_{x}^{-1}\right)+\left(S_{y} \Lambda_{y} S_{y}^{-1} \otimes S_{x} I_{x} S_{x}^{-1}\right) \\
& =\left(S_{y} \otimes S_{x}\right)\left(I_{y} \otimes \Lambda_{x}+\Lambda_{y} \otimes I_{x}\right)\left(S_{y}^{-1} \otimes S_{x}^{-1}\right) \\
& =S \Lambda S^{-1}
\end{aligned}
$$

- The inverse is then $A_{2 D}^{-1}=S \Lambda^{-1} S^{-1}$ (verify!), or

$$
A_{2 D}^{-1}=\left(S_{y} \otimes S_{x}\right)\left(I_{y} \otimes \Lambda_{x}+\Lambda_{y} \otimes I_{x}\right)^{-1}\left(S_{y}^{-1} \otimes S_{x}^{-1}\right)
$$

- Notice that $\Lambda:=\left(I_{y} \otimes \Lambda_{x}+\Lambda_{y} \otimes I_{x}\right)$ is diagonal and easily inverted.
- The solution to $A_{2 D} \mathbf{u}=\mathbf{f}$ is thus

$$
\mathbf{u}=\left(S_{y} \otimes S_{x}\right)\left(I_{y} \otimes \Lambda_{x}+\Lambda_{y} \otimes I_{x}\right)^{-1}\left(S_{y}^{-1} \otimes S_{x}^{-1}\right) \mathbf{f}
$$

- In fast matrix-matrix product form, this has a particularly compact expression:

$$
U=S_{x}\left[D \circ\left(S_{x}^{-1} F S_{y}^{-T}\right)\right] S_{y}^{T}
$$

where $W=D \circ V$ is used to denote pointwise multiplication of the entries of the matrix pair (D, V). That is, $w_{i j}:=d_{i j} * v_{i j}$.

- Note that, for the particular 1D A_{x} and A_{y} matrices in this example that the eigenvectors are orthogonal. If we normalize the columns, then $S_{x}^{-1}=S_{x}^{T} \quad($ same for $y)$.

Computing $\|A\|_{2}$ and $\operatorname{cond}_{2}(A)$.

- Recall: $\quad \operatorname{cond}(A):=\left\|A^{-1}\right\| \cdot\|A\|$,

$$
\begin{aligned}
& \|A\|:=\max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|} \\
& \|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}=\sqrt{\mathbf{x}^{T} \mathbf{x}} \\
& \|\mathbf{x}\|_{2}^{2}=\mathbf{x}^{T} \mathbf{x}
\end{aligned}
$$

- From now on, drop the subscript " 2 ".

$$
\begin{aligned}
\|\mathbf{x}\|^{2} & =\mathbf{x}^{T} \mathbf{x} \\
\|A \mathbf{x}\|^{2} & =(A \mathbf{x})^{T}(A \mathbf{x})=\mathbf{x}^{T} A^{T} A \mathbf{x}
\end{aligned}
$$

- Matrix norm:

$$
\begin{aligned}
\|A\|^{2} & =\max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|^{2}}{\|\mathbf{x}\|^{2}} \\
& =\max _{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} A^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \\
& =\lambda_{\max }\left(A^{T} A\right)=: \text { spectral radius of }\left(A^{T} A\right) .
\end{aligned}
$$

- The symmetric positive definite matrix $B:=A^{T} A$ has positive eigenvalues.
- All symmetric matrices B have a complete set of orthonormal eigenvectors satisfying

$$
B \mathbf{z}_{j}=\lambda_{j} \mathbf{z}_{j}, \quad \mathbf{z}_{i}^{T} \mathbf{z}_{j}=\delta_{i j}=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array} .\right.
$$

- Note: If $\lambda_{i}=\lambda_{j}, i \neq j$, then can have $\mathbf{z}_{i}^{T} \mathbf{z}_{j} \neq 0$, but we can orthogonalize \mathbf{z}_{i} and \mathbf{z}_{j} so that $\tilde{\mathbf{z}}_{i}^{T} \tilde{\mathbf{z}}_{j}=0$ and

$$
\begin{aligned}
& B \tilde{\mathbf{z}}_{i}=\lambda_{i} \tilde{\mathbf{z}}_{i} \quad \lambda_{i}=\lambda_{j} \\
& B \tilde{\mathbf{z}}_{j}=\lambda_{j} \tilde{\mathbf{z}}_{j} .
\end{aligned}
$$

- Assume eigenvalues are sorted with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.
- For any \mathbf{x} we have: $\mathbf{x}=c_{1} \mathbf{z}_{1}+c_{2} \mathbf{z}_{2}+\cdots+c_{n} \mathbf{z}_{n}$.
- Let $\|\mathbf{x}\|=1$.
- Want to find $\max _{\|\mathbf{x}\|=1} \frac{\mathbf{x}^{T} B \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\max _{\|\mathbf{x}\|=1} \mathbf{x}^{T} B \mathbf{x}$.
- Note: $\mathbf{x}^{T} \mathbf{x}=\left(\sum_{i=1}^{n} c_{i} \mathbf{z}_{i}\right)^{T}\left(\sum_{j=1}^{n} c_{j} \mathbf{z}_{j}\right)$

$$
=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} \mathbf{z}_{i}^{T} \mathbf{z}_{j}
$$

$$
=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} \delta_{i j}
$$

$$
=\sum_{i=1}^{n} c_{i}^{2}=1
$$

$$
\Longrightarrow c_{1}^{2}=1-\sum_{i=2}^{n} c_{i}^{2}
$$

$$
\begin{aligned}
\mathbf{x}^{T} B \mathbf{x} & =\left(\sum_{i=1}^{n} c_{i} \mathbf{z}_{i}\right)^{T}\left(\sum_{j=1}^{n} c_{j} B \mathbf{z}_{j}\right) \\
& =\left(\sum_{i=1}^{n} c_{i} \mathbf{z}_{i}\right)^{T}\left(\sum_{j=1}^{n} c_{j} \lambda_{j} \mathbf{z}_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \lambda_{j} c_{j} \mathbf{z}_{i}^{T} \mathbf{z}_{j} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \lambda_{j} c_{j} \delta_{i j} \\
& =\sum_{i=1}^{n} c_{i}^{2} \lambda_{i}=c_{1}^{2} \lambda_{1}+c_{2}^{2} \lambda_{2}+\cdots+c_{n}^{2} \lambda_{n} \\
& =\lambda_{1}\left[c_{1}^{2}+c_{2}^{2} \beta_{2}+\cdots+c_{n}^{2} \beta_{n}\right], \quad 0<\beta_{i}:=\frac{\lambda_{i}}{\lambda_{1}} \leq 1, \\
& =\lambda_{1}\left[\left(1-c_{2}^{2}-\cdots-c_{n}^{2}\right)+c_{2}^{2} \beta_{2}+\cdots+c_{n}^{2} \beta_{n}\right] \\
& =\lambda_{1}\left[1-\left(1-\beta_{2}\right) c_{2}^{2}+\left(1-\beta_{3}\right) c_{3}^{2}+\cdots+\left(1-\beta_{n}\right) c_{n}^{2}\right] \\
& =\lambda_{1}[1-\text { some positive (or zero) numbers }] .
\end{aligned}
$$

- Expression is maximized when $c_{2}=c_{3}=\cdots=c_{n}=0, \Longrightarrow c_{1}=1$.
- Maximum value $\mathbf{x}^{T} B \mathbf{x}=\lambda_{\max }(B)=\lambda_{1}$.
- Similarly, can show $\min \mathbf{x}^{T} B \mathbf{x}=\lambda_{\min }(B)=\lambda_{n}$.
- So, $\|A\|^{2}=\max _{\lambda} \lambda\left(A^{T} A\right)=$ spectral radius of $A^{T} A$.
- Now,

$$
\left\|A^{-1}\right\|^{2}=\max _{\mathbf{x} \neq 0} \frac{\left\|A^{-1} \mathbf{x}\right\|^{2}}{\|\mathbf{x}\|^{2}}
$$

- Let $\mathbf{x}=A \mathbf{y}$:

$$
\begin{aligned}
\left\|A^{-1}\right\|^{2} & =\max _{\mathbf{y} \neq 0} \frac{\left\|A^{-1} A \mathbf{y}\right\|^{2}}{\|A \mathbf{y}\|^{2}}=\max _{\mathbf{y} \neq 0} \frac{\|\mathbf{y}\|^{2}}{\|A \mathbf{y}\|^{2}}=\left(\min _{\mathbf{y} \neq 0} \frac{\|A \mathbf{y}\|^{2}}{\|\mathbf{y}\|^{2}}\right)^{-1} \\
& =\frac{1}{\lambda_{\min }\left(A^{T} A\right)} .
\end{aligned}
$$

- So, $\operatorname{cond}_{2}(A)=\left\|A^{-1}\right\| \cdot\|A\|$,

$$
\operatorname{cond}_{2}(A)=\sqrt{\frac{\lambda_{\max }\left(A^{T} A\right)}{\lambda_{\min }\left(A^{T} A\right)}}
$$

Special Types of Linear Systems

- Work and storage can often be saved in solving linear system if matrix has special properties
- Examples include
- Symmetric: $\boldsymbol{A}=\boldsymbol{A}^{T}, a_{i j}=a_{j i}$ for all i, j
- Positive definite: $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}>0$ for all $\boldsymbol{x} \neq \mathbf{0}$
- Band: $a_{i j}=0$ for all $|i-j|>\beta$, where β is bandwidth of \boldsymbol{A}
- Sparse: most entries of \boldsymbol{A} are zero

Symmetric Positive Definite (SPD) Matrices

\square Very common in optimization and physical processes
\square Easiest example:

If B is invertible, then $A:=B^{\top} B$ is SPD.
\square SPD systems of the form $A \underline{x}=\underline{b}$ can be solved using
(stable) Cholesky factorization $A=L L^{\top}$, or
\square iteratively with the most robust iterative solver, conjugate gradient iteration (generally with preconditioning, known as preconditioned conjugate gradients, PCG).

Cholesky Factorization and SPD Matrices.

- A is SPD: $A=A^{T}$ and $\mathbf{x}^{T} A \mathbf{x}>0$ for all $\mathbf{x} \neq 0$.
- Seek a symmetric factorization $A=\tilde{L} \tilde{L}^{T}($ not $L U)$.
- L not lower triangular but not unit lower triangular.
- That is, $L t_{i i}$ not necessarily 1.
- Alternatively, seek factorization $A=L D L^{T}$, where L is unit lower triangular and D is diagonal.
- Start with $L D L^{T}=A$.
- Clearly, $L U=A$ with $U=D L^{T}$.
- Follows from uniqueness of $L U$ factorization.
- D is a row scaling of L^{T} and thus $D_{i i}=U_{i i}$.
- A property of SPD matrices is that all pivots are positive.
- (Another property is that you do not need to pivot.)
- Consider standard update step:

$$
\begin{aligned}
a_{i j} & =a_{i j}-\frac{a_{i k} a_{k j}}{a_{k k}} \\
& =a_{i j}-\frac{a_{i k} a_{j k}}{a_{k k}}
\end{aligned}
$$

- Usual multiplier column entries are $l_{i k}=a_{i k} / a_{k k}$.
- Usual pivot row entries are $u_{k j}=a_{k j}=a_{j k}$.
- So, if we factor $1 / d_{k k}=1 / a_{k k}$ out of U, we have:

$$
\begin{aligned}
d_{k k}\left(a_{k j} / a_{k k}\right) & =d_{k k} l_{k j} \\
\longrightarrow U & =D\left(D^{-1} U\right) \\
& =D L^{T}
\end{aligned}
$$

- For Cholesky, we have

$$
A=L D L^{T}=L \sqrt{D} \sqrt{D} L^{T}=\tilde{L} \tilde{L}^{T}
$$

with $\tilde{L}=L \sqrt{D}$.

Symmetric Positive Definite Matrices

- If \boldsymbol{A} is symmetric and positive definite, then LU factorization can be arranged so that $\boldsymbol{U}=\boldsymbol{L}^{T}$, which gives Cholesky factorization

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}
$$

where L is lower triangular with positive diagonal entries

- Algorithm for computing it can be derived by equating corresponding entries of \boldsymbol{A} and $\boldsymbol{L} \boldsymbol{L}^{T}$
- In 2×2 case, for example,

$$
\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
l_{11} & 0 \\
l_{21} & l_{22}
\end{array}\right]\left[\begin{array}{cc}
l_{11} & l_{21} \\
0 & l_{22}
\end{array}\right]
$$

implies

$$
l_{11}=\sqrt{a_{11}}, \quad l_{21}=a_{21} / l_{11}, \quad l_{22}=\sqrt{a_{22}-l_{21}^{2}}
$$

Cholesky Factorization (Text)

```
Algorithm 2.7 Cholesky Factorization
    for \(k=1\) to \(n \quad\{\) loop over columns \}
        \(a_{k k}=\sqrt{a_{k k}}\)
        for \(i=k+1\) to \(n\)
        \(a_{i k}=a_{i k} / a_{k k} \quad\{\) scale current column \}
        end
        for \(j=k+1\) to \(n\)
        for \(i=j\) to \(n\)
            \(a_{i j}=a_{i j}-a_{i k} \cdot a_{j k}\)
        end
        end
    end
```

After a row scaling, this is just standard LU decomposition, exploiting symmetry in the $L U$ factors and A. ($U=L^{T}$)

Cholesky Factorization

- One way to write resulting general algorithm, in which Cholesky factor L overwrites original matrix A, is

```
for \(j=1\) to \(n\)
    for \(k=1\) to \(j-1\)
        for \(i=j\) to \(n\)
            \(a_{i j}=a_{i j}-a_{i k} \cdot a_{j k}\)
        end
    end
    \(a_{j j}=\sqrt{a_{j j}}\)
    for \(k=j+1\) to \(n\)
        \(a_{k j}=a_{k j} / a_{j j}\)
    end
end
```


Cholesky Factorization, continued

- Features of Cholesky algorithm for symmetric positive definite matrices
- All n square roots are of positive numbers, so algorithm is well defined
- No pivoting is required to maintain numerical stability
- Only lower triangle of \boldsymbol{A} is accessed, and hence upper triangular portion need not be stored
- Only $n^{3} / 6$ multiplications and similar number of additions are required
- Thus, Cholesky factorization requires only about half work and half storage compared with LU factorization of general matrix by Gaussian elimination, and also avoids need for pivoting

Linear Algebra Very Short Summary

Main points:
\square Conditioning of matrix cond(A) bounds our expected accuracy.
\square e.g., if cond $(A) \sim 10^{5}$ we expect at most 11 significant digits in \underline{x}.
Why?
\square We start with IEEE double precision - 16 digits. We lose 5 because condition (A) $\sim 10^{5}$, so we have $11=16-5$.

Stable algorithm (i.e., pivoting) important to realizing this bound.
\square Some systems don't need pivoting (e.g., SPD, diagonally dominant)
\square Unstable algorithms can sometimes be rescued with iterative refinement.

- Costs:
\square Full matrix $\rightarrow \mathrm{O}\left(\mathrm{n}^{2}\right)$ storage, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ work (wall-clock time)
\square Sparse or banded matrix, substantially less.
\square The following slides present the book's derivation of the LU factorization process.
\square I'll highlight a few of them that show the equivalence between the outer product approach and the elementary elimination matrix approach.

Example: Triangular Linear System

$$
\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
8
\end{array}\right]
$$

- Using back-substitution for this upper triangular system, last equation, $4 x_{3}=8$, is solved directly to obtain $x_{3}=2$
- Next, x_{3} is substituted into second equation to obtain $x_{2}=2$
- Finally, both x_{3} and x_{2} are substituted into first equation to obtain $x_{1}=-1$

Elimination

- To transform general linear system into triangular form, we need to replace selected nonzero entries of matrix by zeros
- This can be accomplished by taking linear combinations of rows
- Consider 2-vector $\boldsymbol{a}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$
- If $a_{1} \neq 0$, then

$$
\left[\begin{array}{cc}
1 & 0 \\
-a_{2} / a_{1} & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
0
\end{array}\right]
$$

Elementary Elimination Matrices

- More generally, we can annihilate all entries below k th position in n-vector \boldsymbol{a} by transformation

$$
\boldsymbol{M}_{k} \boldsymbol{a}=\left[\begin{array}{cccccc}
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & -m_{k+1} & 1 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & -m_{n} & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k} \\
a_{k+1} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $m_{i}=a_{i} / a_{k}, i=k+1, \ldots, n$

- Divisor a_{k}, called pivot, must be nonzero

Elementary Elimination Matrices, continued

- Matrix M_{k}, called elementary elimination matrix, adds multiple of row k to each subsequent row, with multipliers m_{i} chosen so that result is zero
- M_{k} is unit lower triangular and nonsingular
- $\boldsymbol{M}_{k}=\boldsymbol{I}-\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}$, where $\boldsymbol{m}_{k}=\left[0, \ldots, 0, m_{k+1}, \ldots, m_{n}\right]^{T}$ and e_{k} is k th column of identity matrix
- $\boldsymbol{M}_{k}^{-1}=\boldsymbol{I}+\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}$, which means $\boldsymbol{M}_{k}^{-1}=: \boldsymbol{L}_{k}$ is same as \boldsymbol{M}_{k} except signs of multipliers are reversed

Elementary Elimination Matrices, continued

- If $M_{j}, j>k$, is another elementary elimination matrix, with vector of multipliers \boldsymbol{m}_{j}, then

$$
\begin{aligned}
\boldsymbol{M}_{k} \boldsymbol{M}_{j} & =\boldsymbol{I}-\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}-\boldsymbol{m}_{j} \boldsymbol{e}_{j}^{T}+\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T} \boldsymbol{m}_{j} \boldsymbol{e}_{j}^{T} \\
& =\boldsymbol{I}-\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}-\boldsymbol{m}_{j} \boldsymbol{e}_{j}^{T}
\end{aligned}
$$

which means product is essentially "union," and similarly for product of inverses, $\boldsymbol{L}_{k} \boldsymbol{L}_{j}$

Comment on update step and $\underline{m}_{k} \underline{e}^{T} k$

- Recall, $\underline{v}=\mathrm{C} \underline{\mathrm{w}} \in \operatorname{span}\{\mathrm{C}\}$.
$\therefore \mathrm{V}=\left(\underline{\mathrm{v}}_{1} \underline{\mathrm{v}}_{2} \ldots \underline{\mathrm{v}}_{\mathrm{n}}\right)=\mathrm{C}\left(\underline{\mathrm{w}}_{1} \underline{\mathrm{w}}_{2} \ldots \underline{\mathrm{w}}_{\mathrm{n}}\right) \in \operatorname{span}\{\mathrm{C}\}$.

If $\mathrm{C}=\underline{\mathrm{c}}$, i.e., C is a column vector and therefore of rank 1 , then V is in span\{C\} and is of rank 1.
\square All columns of V are multiples of \underline{c}.
\square Thus, $W=\underline{c} \underline{r}^{\top}$ is an $n \times n$ matrix of rank 1 .

- All columns are multiples of the first column and
- All rows are multiples of the first row.

Elementary Elimination Matrices, continued

- Matrix M_{k}, called elementary elimination matrix, adds multiple of row k to each subsequent row, with multipliers m_{i} chosen so that result is zero
- M_{k} is unit lower triangular and nonsingular
- $\boldsymbol{M}_{k}=\boldsymbol{I}-\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}$, where $\boldsymbol{m}_{k}=\left[0, \ldots, 0, m_{k+1}, \ldots, m_{n}\right]^{T}$ and e_{k} is k th column of identity matrix
- $\boldsymbol{M}_{k}^{-1}=\boldsymbol{I}+\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}$, which means $\boldsymbol{M}_{k}^{-1}=: \boldsymbol{L}_{k}$ is same as \boldsymbol{M}_{k} except signs of multipliers are reversed

Existence, Uniqueness, and Conditioning
Solving Linear Systems Special Types of Linear Systems Software for Linear Systems

Example: Elementary Elimination Matrices

- For $\boldsymbol{a}=\left[\begin{array}{r}2 \\ 4 \\ -2\end{array}\right]$,

$$
\boldsymbol{M}_{1} \boldsymbol{a}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

and

$$
\boldsymbol{M}_{2} \boldsymbol{a}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 / 2 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right]
$$

Example, continued

- Note that

$$
\boldsymbol{L}_{1}=\boldsymbol{M}_{1}^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], \quad \boldsymbol{L}_{2}=\boldsymbol{M}_{2}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 / 2 & 1
\end{array}\right]
$$

and

$$
\boldsymbol{M}_{1} \boldsymbol{M}_{2}=\left[\begin{array}{rcc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 1 / 2 & 1
\end{array}\right], \quad \boldsymbol{L}_{1} \boldsymbol{L}_{2}=\left[\begin{array}{rcc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -1 / 2 & 1
\end{array}\right]
$$

Gaussian Elimination

- To reduce general linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ to upper triangular form, first choose M_{1}, with a_{11} as pivot, to annihilate first column of \boldsymbol{A} below first row
- System becomes $\boldsymbol{M}_{1} \boldsymbol{A x}=\boldsymbol{M}_{1} \boldsymbol{b}$, but solution is unchanged
- Next choose M_{2}, using a_{22} as pivot, to annihilate second column of $\boldsymbol{M}_{1} \boldsymbol{A}$ below second row
- System becomes $M_{2} M_{1} \boldsymbol{A x}=\boldsymbol{M}_{2} \boldsymbol{M}_{1} \boldsymbol{b}$, but solution is still unchanged
- Process continues for each successive column until all subdiagonal entries have been zeroed

Gaussian Elimination

- To reduce general linear system $\boldsymbol{A x}=\boldsymbol{b}$ to upper triangular form, first choose \boldsymbol{M}_{1}, with a_{11} as pivot, to annihilate first column of \boldsymbol{A} below first row
- System becomes $\boldsymbol{M}_{1} \boldsymbol{A x}=\boldsymbol{M}_{1} \boldsymbol{b}$, but solution is unchanged
- Next choose M_{2}, using a_{22} as pivot, to annihilate second column of $M_{1} A$ below second row
- System becomes $\boldsymbol{M}_{2} M_{1} \boldsymbol{A x}=M_{2} M_{1} \boldsymbol{b}$, but solution is still unchanged
- Technically, this should be a^{\prime}, the 2-2 entry in $A^{\prime}:=M_{1} A$. Thus, we don't know all the pivots in advance.

Gaussian Elimination, continued

- Resulting upper triangular linear system

$$
\begin{aligned}
M_{n-1} \cdots M_{1} \boldsymbol{A} \boldsymbol{x} & =\boldsymbol{M}_{n-1} \cdots \boldsymbol{M}_{1} \boldsymbol{b} \\
\boldsymbol{M A \boldsymbol { A }} & =\boldsymbol{M b}
\end{aligned}
$$

can be solved by back-substitution to obtain solution to original linear system $\boldsymbol{A x}=\boldsymbol{b}$

- Process just described is called Gaussian elimination

LU Factorization

- Product $\boldsymbol{L}_{k} \boldsymbol{L}_{j}$ is unit lower triangular if $k<j$, so

$$
\boldsymbol{L}=\boldsymbol{M}^{-1}=\boldsymbol{M}_{1}^{-1} \cdots \boldsymbol{M}_{n-1}^{-1}=\boldsymbol{L}_{1} \cdots \boldsymbol{L}_{n-1}
$$

is unit lower triangular

- By design, $U=M A$ is upper triangular
- So we have

$$
A=\boldsymbol{L} \boldsymbol{U}
$$

with L unit lower triangular and \boldsymbol{U} upper triangular

- Thus, Gaussian elimination produces $L U$ factorization of matrix into triangular factors

LU Factorization, continued

- Having obtained LU factorization, $\boldsymbol{A x}=\boldsymbol{b}$ becomes $\boldsymbol{L U} \boldsymbol{x}=\boldsymbol{b}$, and can be solved by forward-substitution in lower triangular system $\boldsymbol{L} \boldsymbol{y}=\boldsymbol{b}$, followed by back-substitution in upper triangular system $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{y}$
- Note that $\boldsymbol{y}=\boldsymbol{M b}$ is same as transformed right-hand side in Gaussian elimination
- Gaussian elimination and LU factorization are two ways of expressing same solution process

Example: Gaussian Elimination

- Use Gaussian elimination to solve linear system

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{rrr}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
2 \\
8 \\
10
\end{array}\right]=\boldsymbol{b}
$$

- To annihilate subdiagonal entries of first column of \boldsymbol{A},

$$
\begin{gathered}
\boldsymbol{M}_{1} \boldsymbol{A}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right]=\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 1 & 5
\end{array}\right], \\
\boldsymbol{M}_{1} \boldsymbol{b}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
8 \\
10
\end{array}\right]=\left[\begin{array}{r}
2 \\
4 \\
12
\end{array}\right]
\end{gathered}
$$

Example, continued

- To annihilate subdiagonal entry of second column of $M_{1} A$,

$$
\begin{gathered}
\boldsymbol{M}_{2} \boldsymbol{M}_{1} \boldsymbol{A}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 1 & 5
\end{array}\right]=\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]=\boldsymbol{U}, \\
\boldsymbol{M}_{2} \boldsymbol{M}_{1} \boldsymbol{b}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
4 \\
12
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
8
\end{array}\right]=\boldsymbol{M} \boldsymbol{b}
\end{gathered}
$$

Example, continued

- We have reduced original system to equivalent upper triangular system

$$
\boldsymbol{U} \boldsymbol{x}=\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
8
\end{array}\right]=\boldsymbol{M} \boldsymbol{b}
$$

which can now be solved by back-substitution to obtain

$$
\boldsymbol{x}=\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]
$$

Existence, Uniqueness, and Conditioning
Solving Linear Systems Special Types of Linear Systems Software for Linear Systems

Triangular Systems

Example, continued

- To write out LU factorization explicitly,

$$
\boldsymbol{L}_{1} \boldsymbol{L}_{2}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]=\boldsymbol{L}
$$

so that

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]=\boldsymbol{L} \boldsymbol{U}
$$

