A Note on Convergence Rate for Newton and Secant Methods
 Paul F. Fischer
 Computer Science
 Mechanical Science \& Engineering
 University of Illinois, Champaign-Urbana

1 Fixed Point Iteration

We are interested in the error behavior of nonlinear iteration schemes. If x^{*} is our solution and x_{k} the current guess, then the error is $e_{k}:=x_{k}-x^{*}$. If we have

$$
\lim _{k \longrightarrow \infty} \frac{\left|e_{k+1}\right|}{\left|e_{k}\right|^{r}}=C
$$

we say that the convergence is of order r.
Consider a fixed-point iteration, $x_{k+1}=g\left(x_{k}\right)$. Using a Taylor series expansion about x^{*}, there exists $\theta_{k} \in\left[x_{k}, x^{*}\right]$ such that

$$
x_{k+1}=g\left(x_{k}\right)=g\left(x^{*}\right)+e_{k} g^{\prime}\left(\theta_{k}\right)
$$

Subtracting $x^{*}=g\left(x^{*}\right)$ from both sides, we have

$$
e_{k+1}=e_{k} g^{\prime}\left(\theta_{k}\right),
$$

or

$$
\frac{e_{k+1}}{e_{k}}=g^{\prime}\left(\theta_{k}\right)
$$

If $g^{\prime}\left(x^{*}\right) \neq 0$ then the order of convergence is $r=1$ and $C=g^{\prime}\left(x^{*}\right)$.
If $g^{\prime}\left(x^{*}\right)=0$, we take a two term Taylor series expansion,

$$
x_{k+1}=g\left(x_{k}\right)=g\left(x^{*}\right)+e_{k} g^{\prime}\left(x^{*}\right)+\frac{e_{k}^{2}}{2} g^{\prime \prime}\left(x i_{k}\right)
$$

from which we find

$$
\frac{e_{k+1}}{e_{k}^{2}}=g^{\prime \prime}\left(\xi_{k}\right)
$$

for some $\xi_{k} \in\left[x_{k}, x^{*}\right]$.

2 Secant Method

Newton's method is a proper fixed point interation of the form $x_{k+1}=g\left(x_{k}\right)$ with $g^{\prime}\left(x^{*}\right)=0$ (unless there is a multiplicity of order $m>1$ at x^{*}).

By contrast, the secant method is of the form $x_{k+1}=g\left(x_{k}, x_{k-1}\right)$. Its error behavior is slightly different and we'll need to look at its precise formulation in some detail to arrive at the order of convergence.

Recall Newton's method

$$
x_{k+1}=x_{k}-\frac{1}{f_{k}^{\prime}} f_{k}
$$

For the secant method, we approximate f_{k}^{\prime} as

$$
f_{k}^{\prime} \approx \frac{f_{k}-f_{k-1}}{x_{k}-x_{k-1}}
$$

which leads to

$$
x_{k+1}=x_{k}-\frac{x_{k}-x_{k-1}}{f_{k}-f_{k-1}} f_{k} .
$$

Subtracting x^{*} from both sides we have the error equation

$$
\begin{aligned}
e_{k+1} & =e_{k}-\frac{e_{k}-e_{k-1}}{f_{k}-f_{k-1}} f_{k} \\
& =\frac{f_{k} e_{k}-f_{k-1} e_{k}}{f_{k}-f_{k-1}}-\frac{f_{k} e_{k}-f_{k} e_{k-1}}{f_{k}-f_{k-1}} \\
& =\frac{f_{k} e_{k-1}-f_{k-1} e_{k}}{f_{k}-f_{k-1}} \\
& =\left(\frac{x_{k}-x_{k-1}}{f_{k}-f_{k-1}}\right)\left(\frac{f_{k} e_{k-1}-f_{k-1} e_{k}}{x_{k}-x_{k-1}}\right) . \\
& =\left(\frac{x_{k}-x_{k-1}}{f_{k}-f_{k-1}}\right)\left(\frac{f_{k} / e_{k}-f_{k-1} / e_{k-1}}{x_{k}-x_{k-1}}\right) e_{k} e_{k-1}
\end{aligned}
$$

If the scheme is convergent, the first term approaches $1 / f^{\prime}\left(x^{*}\right)$. For the second term, use a Taylor series about x^{*} and the fact that $f\left(x^{*}\right)=0$ to note that

$$
\frac{f_{k}}{e_{k}}=\frac{f_{k}-f\left(x^{*}\right)}{x_{k}-x^{*}}=f^{\prime}\left(x^{*}\right)+\frac{e_{k}}{2} f^{\prime \prime}\left(x^{*}\right)+\text { h.o.t.. }
$$

Thus

$$
\left(\frac{f_{k} / e_{k}-f_{k-1} / e_{k-1}}{x_{k}-x_{k-1}}\right) \approx\left(\frac{\frac{1}{2} e_{k} f^{\prime \prime}-\frac{1}{2} e_{k-1} f^{\prime \prime}}{e_{k}-e_{k-1}}\right) \approx \frac{1}{2} f^{\prime \prime}\left(x^{*}\right) .
$$

Combining the results, we have

$$
\begin{align*}
\lim _{k \longrightarrow \infty} e_{k+1} & =\frac{1}{2} \frac{f^{\prime \prime}\left(x^{*}\right)}{f^{\prime}\left(x^{*}\right)} e_{k} e_{k-1} \\
& =A e_{k} e_{k-1} \tag{1}
\end{align*}
$$

The next step is to determine the rate of convergence, r.
To do so, we use the rate of convergence ansatz,

$$
\begin{equation*}
\left|e_{k+1}\right| \sim C\left|e_{k}\right|^{r} \tag{2}
\end{equation*}
$$

from which we also have

$$
\begin{align*}
\left|e_{k}\right| & \sim C\left|e_{k-1}\right|^{r} \tag{3}\\
\left|e_{k-1}\right| & \sim\left(\left(\left|e_{k}\right| / C\right)^{1 / r}\right. \tag{4}
\end{align*}
$$

Using (1) and (2), we have

$$
\begin{align*}
C\left|e_{k}\right|^{r} \sim\left|e_{k+1}\right| & \sim A\left|e_{k}\right|\left|e_{k-1}\right| \tag{5}\\
& \sim A\left|e_{k}\right|\left(\left(\left|e_{k}\right| / C\right)^{1 / r}\right. \tag{6}\\
& \sim A\left|e_{k}\right|^{1+\frac{1}{r}} C^{-\frac{1}{r}} \tag{7}
\end{align*}
$$

Consolidating,

$$
\begin{equation*}
C^{1+\frac{1}{r}} A^{-1} \sim\left|e_{k}\right|^{1+\frac{1}{r}-r}=\mathrm{constant} \text { as } k \longrightarrow \infty \tag{8}
\end{equation*}
$$

Since the left-hand side is a constant (in the limit), then we must have

$$
1+\frac{1}{r}-r=0
$$

or

$$
r^{2}-r-1=0
$$

which has the solution

$$
r=\frac{1+\sqrt{5}}{2} \approx 1.62
$$

