These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).
Vector Norms

- **Properties of vector norms**

\[||x|| \geq 0 \]
\[||x|| = 0 \iff x = 0 \]
\[||\alpha x|| = |\alpha| \cdot ||x|| \]
\[||x + y|| \leq ||x|| + ||y|| \quad (\text{triangle inequality}) \implies \text{continuity} \]

- **A norm is uniquely defined by its unit sphere:** Surface defined by space of vectors \(V \subset \mathbb{R}^n \) such that \(\forall x \in V, ||x|| = 1 \)

- **p-norms**

\[||x||_p = \left(\sum_i |x_i|^p \right)^{1/p} \]

 - \(p = 1 \) gives sum of absolute values of entry (unit sphere is diamond-like)
 - \(p = \infty \) gives maximum entry in absolute value (unit sphere is box-like)
 - \(p = 2 \) gives Euclidean distance metric (unit sphere is spherical)
Inner-Product Spaces

- **Properties of inner-product spaces**: Inner products $\langle x, y \rangle$ must satisfy
 \[
 \langle x, x \rangle \geq 0 \\
 \langle x, x \rangle = 0 \iff x = 0 \\
 \langle x, y \rangle = \langle y, x \rangle \\
 \langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle \\
 \langle \alpha x, y \rangle = \alpha \langle x, y \rangle
 \]

- **Inner-product-based vector norms**

 The $p = 2$ vector norm is the Euclidean inner-product norm,
 \[
 \|x\|_2 = \sqrt{x^T x}
 \]

 and due to Cauchy-Schwartz inequality $|\langle x, y \rangle| \leq \sqrt{\langle x, x \rangle \cdot \langle y, y \rangle}$,
 \[
 |x^T y| \leq \|x\|_2 \|y\|_2.
 \]

 Other inner-products can be expressed as $\langle x, y \rangle = x^T Ay$ where A is symmetric positive definite, yielding norms $\|x\|_A = \sqrt{x^T Ax}$.
Matrix Norms

- Properties of matrix norms:
 \[\| A \| \geq 0 \]
 \[\| A \| = 0 \iff A = 0 \]
 \[\| \alpha A \| = |\alpha| \cdot \| A \| \]
 \[\| A + B \| \leq \| A \| + \| B \| \] (triangle inequality)

- Frobenius norm:
 \[\| A \|_F = \left(\sum_{i,j} a_{ij}^2 \right)^{1/2} \]

- Operator/induced/subordinate matrix norms:
 For any vector norm \(\| \cdot \| \), the induced matrix norm is
 \[\| A \| = \max_{x \neq 0} \| Ax \|/\| x \| = \max_{\| x \| = 1} \| Ax \| \]
Induced Matrix Norms

- **Interpreting induced matrix norms**: A matrix is uniquely defined with respect to a norm by a unit-ball, which is the space of vectors $y = Ax$ for all x on the unit-sphere of the norm.

 $$
 \|A\|_p = \max_{\|x\|_p=1} \|Ax\|_p
 $$

 is the maximum possible p-norm amplification due to application of A

 $$
 1/\|A^{-1}\|_p = \min_{\|x\|_p=1} \|Ax\|_p
 $$

 is the maximum possible p-norm reduction due to application of A

- **General induced matrix norms**:

 $$
 \|A\|_{mp} = \max_{\|x\|_p=1} \|Ax\|_m
 $$

 typically $m = p$ so we write $\|A\|_p$ and almost always we have $p \in \{1, 2, \infty\}$. (Computing the matrix norm for certain choices of $m \neq p$ is NP-complete.)
Definition: $\kappa(A) = \|A\| \cdot \|A^{-1}\|$ is the ratio between the shortest/longest distances from the unit-ball center to any point on the surface.

Intuitive derivation:

\[
\kappa(A) = \max_{\text{inputs}} \max_{\text{perturbations in input}} \frac{\text{relative perturbation in output}}{\text{relative perturbation in input}}
\]

since a matrix is a linear operator, we can decouple its action on the input x and the perturbation δx since $A(x + \delta x) = Ax + A\delta x$, so

\[
\kappa(A) = \frac{\|A\|}{\max_{\text{perturbations in input}} \max_{\text{inputs}} \frac{\text{relative perturbation growth}}{\text{relative input reduction}}} \cdot \frac{1}{\|A^{-1}\|}
\]
Matrix Conditioning

The matrix condition number $\kappa(A)$ is the ratio between the max and min distance from the surface to the center of the unit ball transformed by $\kappa(A)$:

- The max distance to center is given by the vector maximizing $\max_{||x||=1} ||Ax||_2$.
- The min distance to center is given by the vector minimizing $\min_{||x||=1} ||Ax||_2 = 1/(\max_{||x||=1} ||A^{-1}x||_2)$.
- Thus, we have that $\kappa(A) = ||A||_2 ||A^{-1}||_2$

The matrix condition number bounds the worst-case amplification of error in a matrix-vector product: Consider $y + \delta y = A(x + \delta x)$, assume $||x||_2 = 1$

- In the worst case, $||y||_2$ is minimized, that is $||y||_2 = 1/||A^{-1}||_2$
- In the worst case, $||\delta y||_2$ is maximized, that is $||\delta y||_2 = ||A||_2 ||\delta y||_2$
- So $||\delta y||_2/||y||_2$ is at most $\kappa(A)||\delta x||_2/||x||_2$
Orthogonal matrices: A matrix \(Q \) is orthogonal, if its square and its columns are orthonormal, or equivalently \(Q^T = Q^{-1} \).

Norm and condition number of orthogonal matrices: For any \(||v||_2 = 1 \),

\[
||Qv||_2 = \left(\langle v^T Q^T, Qv \rangle \right)^{1/2} = \left(v^T Q^T Qv \right)^{1/2} = \left(v^T v \right)^{1/2} = ||v||_2
\]

Consequently, \(||Q||_2 = ||Q^{-1}||_2 = \kappa(Q) = 1 \).

\(Qv \) expresses \(v \) in a coordinate system whose axes are columns of \(Q^T \).
The singular value decomposition (SVD):

We can express \textit{any} matrix \(A \) as

\[A = U \Sigma V^T \]

where \(U \) and \(V \) are orthogonal, and \(\Sigma \) is square nonnegative and diagonal,

\[\Sigma = \begin{bmatrix} \sigma_{\text{max}} & \cdots & \sigma_{\text{min}} \\ \vdots & \ddots & \vdots \\ \sigma_{\text{min}} & \cdots & \sigma_{\text{max}} \end{bmatrix} \]

Any matrix is diagonal when expressed as an operator mapping vectors from a coordinate system given by \(V \) to a coordinate system given by \(U^T \).
Norms and Conditioning via SVD

- **Norm and condition number in terms of singular values:**

 When multiplying a vector by matrix $A = U \Sigma V^T$

 - Multiplication by V^T changes coordinate systems, leaving the norm unchanged

 - Multiplication by U changes coordinate systems, leaving the norm unchanged

 so, only multiplication by Σ has an effect on the vector norm

 - Note that $|| \Sigma ||_2 = \sigma_{max}$, $|| \Sigma^{-1} ||_2 = 1/\sigma_{min}$, so

 $\kappa(A) = \kappa(\Sigma) = \frac{\sigma_{max}}{\sigma_{min}}$
Let's now return to formally deriving the conditioning of solving $Ax = b$:

Consider a perturbation to the right-hand side (input) $\hat{b} = b + \delta b$

$A\hat{x} = \hat{b}$

$A(x + \delta x) = b + \delta b$

$A\delta x = \delta b$

we wish to bound the size of the relative perturbation to the output $||\delta x||/||x||$

with respect to the size of the relative perturbation the input $||\delta b||/||b||$

$\delta x = A^{-1}\delta b$

$$\frac{||\delta x||}{||x||} = \frac{||A^{-1}\delta b||}{||x||} \leq \frac{||A^{-1}|| \cdot ||\delta b||}{||x||}$$

we can use that $||x|| \geq ||b||/\sigma_{max} = ||b||/||A||$ so

$$\frac{||\delta x||}{||x||} \leq \frac{||A|| \cdot ||A^{-1}||}{\kappa(A)} \cdot \frac{||\delta b||}{||b||} = \frac{\sigma_{max}||\delta b||}{\sigma_{min}||b||}$$
Consider perturbations to the input coefficients $\hat{A} = A + \delta A$:

In this case we solve the perturbed system

$$\hat{A}\hat{x} = b$$

$$Ax + \delta Ax = b - \hat{A}\delta x$$

$$\delta Ax = -\hat{A}\delta x \approx -A\delta x$$

we wish to bound the size of the relative perturbation to the output $||\delta x||/||x||$ with respect to the size of the relative perturbation the the input $||\delta A||/||A||$

$$\delta x = -A^{-1}\delta Ax$$

$$||\delta x|| = ||A^{-1}\delta Ax|| \leq ||A^{-1}|| \cdot ||\delta A|| \cdot ||x||$$

$$\frac{||\delta x||}{||x||} \leq \frac{||A^{-1}|| \cdot ||A|| \cdot ||\delta A||}{\kappa(A) ||A||}$$
Solving Basic Linear Systems

- Solve $Dx = b$ if D is diagonal
 \[x_i = b_i/d_{ii} \text{ with total cost } O(n) \]

- Solve $Qx = b$ if Q is orthogonal
 \[x = Q^Tb \text{ with total cost } O(n^2) \]

- Given SVD $A = U\Sigma V^T$, solve $Ax = b$

 - Compute $z = U^Tb$
 - Solve $\Sigma y = z$ (diagonal)
 - Compute $x = Vx$
Solving Triangular Systems

- $Lx = b$ if L is lower-triangular is solved by forward substitution:

\[
\begin{align*}
l_{11}x_1 &= b_1 & x_1 &= b_1/l_{11} \\
l_{21}x_1 + l_{22}x_2 &= b_2 & \Rightarrow x_2 &= (b_2 - l_{21}x_1)/l_{22} \\
l_{31}x_1 + l_{32}x_2 + l_{33}x_3 &= b_3 & x_3 &= (b_3 - l_{31}x_1 - l_{32}x_2)/l_{33} \\
& \vdots & & \vdots
\end{align*}
\]

- Algorithm can also be formulated recursively by blocks:

\[
\begin{bmatrix}
l_{11} & & \\
l_{21} & L_{22} & \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
\end{bmatrix}
\]

\[
x_1 = b_1/l_{11}, \text{ then solve recursively for } x_2 \text{ in } L_{22}x_2 = b_2 - l_{21}x_1.
\]
Solving Triangular Systems

- **Existence of solution to** $Lx = b$:

 If some $l_{ii} = 0$, the solution may not exist, and L^{-1} does not exist.

- **Uniqueness of solution:** Even if some $l_{ii} = 0$ and L^{-1} does not exist, the system may have a solution. The solution will not be unique since columns of L are necessarily linearly dependent if a diagonal element is zero. May want to select solution minimizing norm of x.

- **Computational complexity of forward/backward substitution:**

 The recursive algorithm has the cost recurrence,

 $$T(n) = T(n - 1) + n = \sum_{i=1}^{n} i = n(n + 1)/2.$$

 The total cost is $n^2/2$ multiplications and $n^2/2$ additions to leading order.
Properties of Triangular Matrices

- \(Z = XY \) is lower triangular if \(X \) and \(Y \) are both lower triangular:

\[
\begin{bmatrix}
z_{11} & z_{12} \\
z_{21} & Z_{22}
\end{bmatrix} =
\begin{bmatrix}
x_{11} & x_{21} \\
x_{21} & X_{22}
\end{bmatrix}
\begin{bmatrix}
y_{11} \\
y_{21}
\end{bmatrix}.
\]

Clearly, \(z_{11} = x_{11}y_{11} \) and \(z_{12} = 0 \), then we proceed by the same argument for the triangular matrix product \(Z_{22} = X_{22}Y_{22} \).

- \(L^{-1} \) is lower triangular if it exists:

We give a constructive proof by providing an algorithm for triangular matrix inversion. We need \(Y = X^{-1} \) so

\[
\begin{bmatrix}
Y_{11} & Y_{21} \\
Y_{21} & Y_{22}
\end{bmatrix}
\begin{bmatrix}
X_{11} & X_{21} \\
X_{21} & X_{22}
\end{bmatrix} =
\begin{bmatrix}
I & I
\end{bmatrix},
\]

from which we can deduce

\[
Y_{11} = X_{11}^{-1}, \quad Y_{22} = X_{22}^{-1}, \quad Y_{21} = -Y_{22}X_{21}Y_{11}.
\]
LU Factorization

- An **LU factorization** consists of a unit-diagonal lower-triangular factor L and upper-triangular factor U such that $A = LU$:

 - Unit-diagonal implies each $l_{ii} = 1$, leaving $n(n - 1)/2$ unknowns in L and $n(n + 1)/2$ unknowns in U, for a total of n^2, the same as the size of A.

 - For rectangular matrices $A \in \mathbb{R}^{m \times n}$, one can consider a full LU factorization, with $L \in \mathbb{R}^{m \times \max(m,n)}$ and $U \in \mathbb{R}^{\max(m,n) \times n}$, but it is fully described by a reduced LU factorization, with lower-trapezoidal $L \in \mathbb{R}^{m \times \min(m,n)}$ and upper-trapezoidal $U \in \mathbb{R}^{\min(m,n) \times n}$.

- Given an LU factorization of A, we can solve the linear system $Ax = b$:

 - using forward substitution $Ly = b$
 - using backward substitution to solve $Ux = y$

Backward substitution is the same as forward substitution with a reversal of the ordering of the elements of the vectors and the ordering of the rows/columns of the matrix.
Gaussian Elimination Algorithm

- Algorithm for factorization is derived from equations given by $A = LU$:

$$
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & A_{22}
\end{bmatrix} =
\begin{bmatrix}
1 & & \\
l_{21} & L_{22}
\end{bmatrix}
\begin{bmatrix}
u_{11} & u_{12} \\
u_{12} & U_{22}
\end{bmatrix} =
\begin{bmatrix}
L_{11} & L_{21} & L_{22}
\end{bmatrix}
\begin{bmatrix}
U_{11} & U_{12} \\
U_{12} & U_{22}
\end{bmatrix}
$$

- First, observe $\begin{bmatrix} u_{11} & u_{12} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \end{bmatrix}$
- To obtain l_{21} compute $l_{21} = a_{21}/u_{11}$
- Obtain L_{22} and U_{22} by recursively computing LU of the Schur complement $S = A_{22} - l_{21}u_{12}$

- The computational complexity of LU is $O(n^3)$:

Computing $l_{21} = a_{21}/u_{11}$ requires $O(n)$ operations, finding S requires $2n^2$, so to leading order the complexity of LU is

$$
T(n) = T(n-1) + 2n^2 = \sum_{i=1}^{n} 2i^2 \approx 2n^3/3
$$
Existence of LU Factorization

- **The LU factorization may not exist:** Consider matrix \[
\begin{bmatrix}
3 & 2 \\
6 & 4 \\
0 & 3 \\
\end{bmatrix}
\].

 Proceeding with Gaussian elimination we obtain

\[
\begin{bmatrix}
3 & 2 \\
6 & 4 \\
0 & 3 \\
\end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & l_{32} \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 0 & u_{21} \end{bmatrix}.
\]

Then we need that \(4 = 4 + u_{21} \) so \(u_{21} = 0 \), but at the same time \(l_{32}u_{21} = 3 \).

More generally, if and only if for any partitioning \[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
\end{bmatrix}
\] the leading minor is singular (\(\det(A_{11}) = 0 \)), \(A \) has no LU factorization.

- **Permutation of rows enables us to transform the matrix so the LU factorization does exist:**

 Gaussian elimination can only fail if dividing by zero. At every recursive step of Gaussian elimination, if the leading entry of the first row is zero, we permute it with a row with a leading nonzero (if \(a_{21} = 0 \), we set \(u_{11} = 0 \) and \(l_{21} = 0 \).
Gaussian Elimination with Partial Pivoting

- **Partial pivoting** permutes rows to make divisor u_{ii} is maximal at each step:

 Based on our argument above, for any matrix A there exists a permutation matrix P that can permute the rows of A to permit an LU factorization,

 $$PA = LU.$$

 Partial pivoting finds such a permutation matrix P one row at a time. The ith row is selected to maximize the magnitude of the leading element (over elements in the first column), which becomes the entry u_{ii}. This selection ensures that we are never forced to divide by zero during Gaussian elimination and that the magnitude of any element in L is at most 1.

- A row permutation corresponds to an application of a row permutation matrix $P_{jk} = I - (e_j - e_k)(e_j - e_k)^T$:

 If we permute row i,j to be the leading (ith) row at the ith step, the overall permutation matrix is given by $P^T = \prod_{i=1}^{n-1} P_{ii,j}$.

Demo: LU with Partial Pivoting
Partial Pivoting Example

- Let's consider again the matrix $A = \begin{bmatrix} 3 & 2 \\ 6 & 4 \\ 0 & 3 \end{bmatrix}$.

- The largest magnitude element in the first column is 6, so we select this as our pivot and perform the first step of LU:

 $$
 \begin{bmatrix}
 1 & 0 \\
 1/2 & 1 \\
 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 6 & 4 \\
 3 & 2 \\
 0 & 3
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 \\
 0 & 2 - (1/2) \cdot 4 \\
 0 & 3 - 0 \cdot 4
 \end{bmatrix}
 +
 \begin{bmatrix}
 0 & 0 \\
 0 & 2 - (1/2) \cdot 4 \\
 0 & 3 - 0 \cdot 4
 \end{bmatrix}
 $$

- The Schur complement is $[0, 3]^T$ and we proceed with pivoted LU,

 $$
 \begin{bmatrix}
 1 & 0 \\
 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 0 \\
 3
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 \\
 0
 \end{bmatrix}
 \begin{bmatrix}
 3
 \end{bmatrix}
 $$

- The overall LU factorization is then given by $P_1 P_2 A = \begin{bmatrix} 1 & P_2 \\ 1/2 & 1 \end{bmatrix} \begin{bmatrix} 6 & 4 \\ 0 & 3 \end{bmatrix}$.
Complete Pivoting

- **Complete pivoting** permutes rows and columns to make divisor u_{ii} is maximal at each step:
 - Partial pivoting ensures that the magnitude of the multipliers satisfies
 \[|l_{21}| = \frac{|a_{21}|}{|u_{11}|} \leq 1 \]
 - Complete pivoting also gives \[\|u_{12}\|_{\infty} \leq |u_{11}| \] and consequently
 \[|l_{21}| \cdot \|u_{12}\|_{\infty} = \frac{|a_{21}| \cdot \|u_{12}\|_{\infty}}{|u_{11}|} \leq |a_{21}| \]
 - Complete pivoting yields a factorization of the form $LU = PAQ$ where P and Q are permutation matrices

- Complete pivoting is noticeably more expensive than partial pivoting:
 - Partial pivoting requires just $O(n)$ comparison operations and a row permutation
 - Complete pivoting requires $O(n^2)$ comparison operations, which somewhat increases the leading order cost of LU overall
Round-off Error in LU

- Lets consider factorization of \[
\begin{bmatrix}
\epsilon & 1 \\
1 & 1 \\
\end{bmatrix}
\] where \(\epsilon < \epsilon_{\text{mach}}\):

 - Without pivoting we would compute \(L = \begin{bmatrix} 1 & 0 \\ 1/\epsilon & 1 \end{bmatrix}, U = \begin{bmatrix} \epsilon & 1 \\ 0 & 1 - 1/\epsilon \end{bmatrix}\)

 - Rounding yields \(fl(U) = \begin{bmatrix} \epsilon & 1 \\ 0 & -1/\epsilon \end{bmatrix}\)

 - This leads to \(Lfl(U) = \begin{bmatrix} \epsilon & 1 \\ 1 & 0 \end{bmatrix}\), a backward error of \(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\)

- Permuting the rows of \(A\) in partial pivoting gives \(PA = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}\)

 - We now compute \(L = \begin{bmatrix} 1 & 0 \\ \epsilon & 1 \end{bmatrix}, U = \begin{bmatrix} 1 & 1 \\ 0 & 1 - \epsilon \end{bmatrix}\), so \(fl(U) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\)

 - This leads to \(Lfl(U) = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 + \epsilon \end{bmatrix}\), a backward error of \(\begin{bmatrix} 0 & 0 \\ 0 & \epsilon \end{bmatrix}\)
Error Analysis of LU

The main source of round-off error in LU is in the computation of the Schur complement:

- Recall that division is well-conditioned, while addition can be ill-conditioned
- After k steps of LU, we are working on Schur complement $A_{22} - L_{21}U_{12}$ where A_{22} is $(n - k) \times (n - k)$, L_{21} and U_{12}^T are $(n - k) \times k$
- Partial pivoting and complete pivoting improve stability by making sure $L_{21}U_{12}$ is small in norm

When computed in floating point, absolute backward error δA in LU (so $\hat{L}\hat{U} = A + \delta A$) is $|\delta a_{ij}| \leq \epsilon_{\text{mach}}(|\hat{L}| \cdot |\hat{U}|)_{ij}$

For any a_{ij} with $j \geq i$ (lower-triangle is similar), we compute

$$a_{ij} - \sum_{k=1}^{i} \hat{l}_{ik}\hat{u}_{kj} = a_{ij} - \langle \hat{l}_i, \hat{u}_j \rangle,$$

which in floating point incurs round-off error at most $\epsilon_{\text{mach}} \langle |\hat{l}_i|, |\hat{u}_j| \rangle$. Using this, for complete pivoting, we can show $|\delta a_{ij}| \leq \epsilon_{\text{mach}}n^2 ||A||_\infty$.
Helpful Matrix Properties

- **Matrix is diagonally dominant**, so \(\sum_{i \neq j} |a_{ij}| \leq |a_{ii}|: \)

 Pivoting is not required if matrix is strictly diagonally dominant
 \(\sum_{i \neq j} |a_{ij}| < |a_{ii}|. \)

- **Matrix is symmetric positive definite (SPD), so** \(\forall x \neq 0, x^T Ax > 0: \)

 \(L = U \) and pivoting is not required, **Cholesky algorithm** \(A = LL^T \) can be used (\(L \) in Cholesky is not unit-diagonal).

- **Matrix is symmetric but indefinite:**

 Compute pivoted **LDL factorization** \(PAP^T = LDL^T \) (where \(L \) is lower-triangular and unit-diagonal, while \(D \) is diagonal)

- **Matrix is banded**, \(a_{ij} = 0 \) if \(|i - j| > b \):

 \(LU \) without pivoting and Cholesky preserve banded structure and require only \(O(nb^2) \) work.
Solving Many Linear Systems

▶ Suppose we have computed $A = LU$ and want to solve $AX = B$ where B is $n \times k$ with $k < n$:

Cost is $O(n^2 k)$ for solving the k independent linear systems

▶ Supposed we have computed $A = LU$ and now want to solve a perturbed system $(A - uv^T)x = b$:

Can use the Sherman-Morrison-Woodbury formula

\[
(A - uv^T)^{-1} = A^{-1} + \frac{A^{-1}uv^TA^{-1}}{1 - v^TA^{-1}u}
\]

▶ Consequently we have $Ax = b + \frac{uv^TA^{-1}}{1 - v^TA^{-1}u}b = b + \frac{v^TA^{-1}b}{1 - v^TA^{-1}u}u$

▶ Need not form A^{-1} or L^{-1} or U^{-1}, suffices to use backward/forward substitution to solve $w^TA = v^T$, i.e. solve $U^TL^Tw = v$ and then solve

\[
LUx = b + \left(\frac{w^Tb}{1 - w^Tu}\right)u
\]

scalar