CS 450: Numerical Analysis\(^1\)
Eigenvalue Problems

University of Illinois at Urbana-Champaign

\(^1\)These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).
Eigenvalues and Eigenvectors

- A matrix \(A \) has eigenvector-eigenvalue pair (eigenpair) \((\lambda, x)\) if

\[
Ax = \lambda x
\]

- For any scalar \(\alpha \), \(\alpha x \) is also an eigenvector of \(A \) with eigenvalue \(\lambda \)
- Generally, an eigenvalue \(\lambda \) is associated with an eigenspace \(\mathcal{X} \subseteq \mathbb{C}^n \) such that each \(x \in \mathcal{X} \) is an eigenvector of \(A \) with eigenvalue \(\lambda \).
- The dimensionality of an eigenspace is at most the multiplicity of an eigenvalue (when less, matrix is defective, otherwise matrix is diagonalizable).
- Each \(n \times n \) matrix has up to \(n \) eigenvalues, which are either real or complex
 - The conjugate of any complex eigenvalue of a real matrix is also an eigenvalue.
 - The dimensionalities of all the eigenspaces (multiplicity associated with each eigenvalue) sum up to \(n \) for a diagonalizable matrix.
- If the matrix is real, real eigenvalues are associated with real eigenvectors, but complex eigenvalues may not be.
Eigenvalue Decomposition

- If a matrix A is diagonalizable, it has an *eigenvalue decomposition*

$$A = XDX^{-1}$$

where X are the right eigenvectors, X^{-1} are the left eigenvectors and D are eigenvalues

$$AX = [Ax_1 \cdots Ax_n] = XD = [d_{11}x_1 \cdots d_{nn}x_n].$$

- If A is symmetric, its right and left singular vectors are the same, and consequently are its eigenvectors.

- More generally, any normal matrix, $A^H A = AA^H$, has unitary eigenvectors.

- A and B are *similar*, if there exist Z such that $A = ZBZ^{-1}$
 - Normal matrices are *unitarily similar* ($Z^{-1} = Z^H$) to diagonal matrices
 - Symmetric real matrices are *orthogonally similar* ($Z^{-1} = Z^T$) to real diagonal matrices
 - Hermitian matrices are unitarily similar to real diagonal matrices
Similarity of Matrices

<table>
<thead>
<tr>
<th>matrix</th>
<th>similarity</th>
<th>reduced form</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPD</td>
<td>orthogonal</td>
<td>real positive diagonal</td>
</tr>
<tr>
<td>real symmetric</td>
<td>orthogonal</td>
<td>real tridiagonal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>real diagonal</td>
</tr>
<tr>
<td>Hermitian</td>
<td>unitary</td>
<td>real diagonal</td>
</tr>
<tr>
<td>normal</td>
<td>unitary</td>
<td>diagonal</td>
</tr>
<tr>
<td>real</td>
<td>orthogonal</td>
<td>real Hessenberg</td>
</tr>
<tr>
<td>diagonalizable</td>
<td>invertible</td>
<td>diagonal</td>
</tr>
<tr>
<td>arbitrary</td>
<td>unitary</td>
<td>triangular</td>
</tr>
<tr>
<td></td>
<td>invertible</td>
<td>bidiagonal</td>
</tr>
</tbody>
</table>
Canonical Forms

- Any matrix is *similar* to a bidiagonal matrix, giving its *Jordan form*:
 \[A = X \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_k \end{bmatrix} X^{-1}, \quad \forall i, \quad J_i = \begin{bmatrix} \lambda_i & 1 \\ & \ddots & \ddots \\ & & \lambda_i \end{bmatrix} \]

 The Jordan form is unique modulo ordering of the diagonal Jordan blocks.

- Any diagonalizable matrix is *unitarily similar* to a triangular matrix, giving its *Schur form*:
 \[A = QTQ^H \]

 Where \(T \) is upper-triangular, so the eigenvalues of \(A \) is the diagonal of \(T \). Columns of \(Q \) are the *Schur vectors*.
Given the eigenvectors of one matrix, we seek those of a similar matrix:

Suppose that $A = SBS^{-1}$ and $B = XDX^{-1}$ where D is diagonal,

- The eigenvalues of A are $\{d_{11}, \ldots, d_{nn}\}$
- $A = SBS^{-1} = SXDX^{-1}S^{-1}$ so SX are the eigenvectors of A

Its easy to obtain eigenvectors of triangular matrix T:

- One eigenvector is simply the first elementary vector.
- The eigenvector associated with any diagonal entry (eigenvalue λ) may be obtaining by observing that

$$0 = (T - \lambda I)x = \begin{bmatrix} U_{11} & u & T_{13} \\ 0 & v^T & U_{33} \end{bmatrix} \begin{bmatrix} -U_{11}^{-1}u \\ 1 \\ 0 \end{bmatrix},$$

so it suffices to solve $U_{11}y = -u$ to obtain eigenvector x.

Activity: Calculating Eigenpairs of a Triangular Matrix
Rayleigh Quotient

- For any vector x, the **Rayleigh quotient** provides an estimate for some eigenvalue of A:

$$\rho_A(x) = \frac{x^H Ax}{x^H x}.$$

- If x is an eigenvector of A, then $\rho_A(x)$ is the associated eigenvalue.

- Moreover, for $y = Ax$, the Rayleigh quotient is the best possible eigenvalue estimate given x and y, as it is the solution to $x\alpha \cong y$.

- The normal equations for this scalar-output least squares problem are

$$x^T x\alpha = x^T y \quad \Rightarrow \quad \alpha = \frac{x^T y}{x^T x} = \frac{x^T Ax}{x^T x}.$$
Suppose we seek eigenvalues \(D = X^{-1}AX \), but find those of a slightly perturbed matrix \(D + \delta D = \hat{X}^{-1}(A + \delta A)\hat{X} \):

Note that the eigenvalues of \(X^{-1}(A + \delta A)X = D + X^{-1}\delta AX \) are also \(D + \delta D \). So if we have perturbation to the matrix \(\|\delta A\|_F \), its effect on the eigenvalues corresponds to a (non-diagonal/arbitrary) perturbation \(\delta \hat{A} = X^{-1}\delta AX \) of a diagonal matrix of eigenvalues \(D \), with norm

\[
\|\delta \hat{A}\|_F \leq \|X^{-1}\|_2\|\delta A\|_F\|X\|_2 = \kappa(X)\|\delta A\|_F.
\]

Gershgorin’s theorem allows us to bound the effect of the perturbation on the eigenvalues of a (diagonal) matrix:

Given a matrix \(A \in \mathbb{R}^{n \times n} \), let \(r_i = \sum_{j \neq i} |a_{ij}| \), define the Gershgorin disks as

\[
D_i = \{ z \in \mathbb{C} : |z - a_{ii}| \leq r_i \}.
\]

The eigenvalues \(\lambda_1, \ldots, \lambda_n \) of any matrix \(A \in \mathbb{R}^{n \times n} \) are contained in the union of the Gershgorin disks, \(\forall i \in \{1, \ldots, n\}, \lambda_i \in \bigcup_{j=1}^{n} D_j \).
Gershgorin Theorem Perturbation Visualization

Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.

Bottom part corresponds to bounds on Gershgorin disks of $X^{-1}(A + \delta A)X$, which contain the eigenvalues D of A and the perturbed eigenvalues $D + \delta D$ of $A + \delta A$ provided that $||\delta A||$ is sufficiently small.
Conditioning of Particular Eigenpairs

Consider the effect of a matrix perturbation on an eigenvalue λ associated with a right eigenvector x and a left eigenvector y, $\lambda = y^H Ax / y^H x$

For a sufficiently small perturbation δA, the eigenvalue λ is perturbed to an eigenvalue $\hat{\lambda}$ of $\hat{A} = A + \delta A$. The eigenvalue perturbation,

$$|\hat{\lambda} - \lambda| = |y^H \delta A x / y^H x| \leq \frac{||\delta A||}{|y^H x|},$$

is small if x is near-parallel to y and large if they are near-perpendicular.

A more accurate eigenvalue approximation than Rayleigh quotient for a normalized perturbed eigenvector (e.g. iterative guess) $\hat{x} = x + \delta x$, can be obtain with an estimate of both eigenvectors (also $\hat{y} = y + \delta y$),

$$|\hat{\lambda}_{xAx} - \lambda| \approx |\delta x^H A x + x^H A \delta x| \leq |\lambda||\delta x| + (|\lambda||y^H x| + |1 - y^H x| \cdot ||A||)||\delta x||$$

$$|\hat{\lambda}_{yAx} - \lambda| \approx \left|\frac{\delta y^H A x + y^H A \delta x}{y^H x}\right| \leq |\lambda|\frac{||\delta x||}{|y^H x|} + ||\delta y||$$
Power Iteration

Power iteration can be used to compute the largest eigenvalue of a real symmetric matrix A:

$$x^{(i)} = Ax^{(i-1)} \quad \text{(typically with normalization of $x^{(i)}$ at each step)}.$$

For a random $x^{(0)}$, power iteration converges eigenvalue of A with largest modulus, \(\lim_{i \to \infty} \rho_A(x^{(i)}) = \lambda_{\text{max}}(A) \). If this eigenvalue has multiplicity one, power iteration converges to dominant eigenvector.

The error of power iteration decreases at each step by the ratio of the largest eigenvalues:

Assuming A is diagonalizable with eigenvectors U and $V^H = U^{-1}$,

$$x^{(k)} = A^k x^{(0)} = (UDV^H)^k x^{(0)} = U D^k V^H x^{(0)} = \sum_{i=1}^{n} u_i \lambda_i^k v_i^H x^{(0)}.$$

The coefficient $\alpha^{(i,k)}$ associated with the maximum λ_i and dominant eigenvector u_i grows relatively, since $|\alpha^{(i,k)}/\alpha^{(j,k)}| = (|\lambda_i|/|\lambda_j|)^k |\alpha^{(i,0)}/\alpha^{(j,0)}|$.

Demo: Power iteration and its Variants
Inverse and Rayleigh Quotient Iteration

- **Inverse iteration** uses LU/QR/SVD of A to run power iteration on A^{-1}
 - For a randomly chosen $x^{(0)}$, solving

 $$Ax^{(i)} = x^{(i-1)} \quad \text{(typically with normalization of } x^{(i)} \text{ at each step)}.$$

 converges to $\lim_{i \to \infty} \rho_A(x^{(i)}) = \lambda_{\text{min}}(A)$ provided there is a unique eigenvalue with minimum magnitude.
 - Inverse iteration on $A - \sigma I$ converges to the eigenvalue closes to σ, since all eigenvalues are shifted by σ.

- **Rayleigh quotient iteration** provides rapid convergence to an eigenpair

 $$(A - \rho_A(x^{(i-1)}) I)x^{(i)} = x^{(i-1)},$$

 since at each step the relative magnitude largest eigenvalue of $(A - \rho_A(x^{(i-1)}) I)^{-1}$ grows. Formally, it achieves cubic convergence, but requires matrix refactorization at each step.
Deflation

- Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair, to obtain further eigenpairs, can perform deflation

 - Given eigenvalue λ_1 and right eigenvector x_1, seek v so that $B = A - \lambda_1 uv^T$ has eigenvalues $\lambda_2, \ldots, \lambda_n$, where

 $$A = XD \underbrace{YT}_{X^{-1}} = \sum_{i=1}^{n} \lambda_i x_i y_i^T.$$

 - Ideal choice would be $v = y_1^T$, i.e. the left eigenvector associated with λ_1, as then the $n - 1$ other eigenvectors of B would be the same as those of A.

 - For symmetric matrices $y_1 = x_1$, but for nonsymmetric, obtaining y_1 may require more work.

 - Good alternative choice for nonsymmetric is to select $v = x_1$, as then the Schur vectors are unmodified, since for $A = QTQ^T$, with $t_{11} = \lambda_1$, $q_1 = x_1$, we get

 $$B = QTQ^T - \lambda_1 q_1 q_1^T = Q(T - \lambda_1 Q^T q_1 q_1^T Q)Q^T = Q(T - \lambda_1 e_1 e_1^T)Q^T.$$
Direct Matrix Reductions

- We can always compute an orthogonal similarity transformation to reduce a general matrix to **upper-Hessenberg** (upper-triangular plus the first subdiagonal) matrix H, i.e. $A = QHQT$:

 > **We can perform successive two-sided application of Householder reflectors**

 $$
 A = \begin{bmatrix}
 h_{11} & a_{12} & \cdots \\
 a_{21} & a_{22} & \\
 \vdots & \ddots &
 \end{bmatrix} = Q_1 \begin{bmatrix}
 h_{11} & a_{12} & \cdots \\
 h_{21} & t_{22} & \\
 0 & \ddots &
 \end{bmatrix} = Q_1 \begin{bmatrix}
 h_{11} & h_{12} & \cdots \\
 h_{21} & h_{22} & \\
 0 & \ddots &
 \end{bmatrix} Q_1^T = \cdots
 $$

 > subsequent columns can be reduced by induction, so we can always stably reduce to upper-Hessenberg with roughly the same cost as QR.

- In the symmetric case, Hessenberg form implies tridiagonal:

 > If $A = A^T$ then $H = QAQ^T = H^T$, and a symmetric upper-Hessenberg matrix must be tridiagonal.

Demo: Householder Similarity Transforms
Simultaneous and Orthogonal Iteration

- **Simultaneous iteration** provides the main idea for computing many eigenvectors at once:

 - Initialize $X_0 \in \mathbb{R}^{n \times k}$ to be random and perform

 $$X_{i+1} = AX_i.$$

 - Observe that $\lim_{i \to \infty} \text{span}(X_i) = S$ where S is the subspace spanned by the k eigenvectors of A with the largest eigenvalues in magnitude.

 - Can use this to compute the right singular vectors of matrix M by using $A = M^T M$ (no need to form A, just multiply X_i by M^T then M).

 - Small number of iterations suffice to obtain reasonable low-rank approximation of M, and ultimately X converge to singular vectors in truncated SVD.

- Orthogonal iteration performs QR at each step to ensure stability

 $$Q_{i+1} R_{i+1} = AQ_i$$

 - Q_i has the same span as X_i in orthogonal iteration.

 - QR has cost $O(nk^2)$ while product has cost $O(n^2k)$ per iteration.
QR Iteration

- QR iteration reformulates orthogonal iteration for \(n = k \) to reduce cost/step,
 - Orthogonal iteration computes \(\hat{Q}_{i+1} \hat{R}_{i+1} = A \hat{Q}_i \)
 - QR iteration computes \(A_{i+1} = R_i Q_i \) at iteration \(i \)

- Using induction, we assume \(A_i = \hat{Q}_i^T A \hat{Q}_i \) and show that QR iteration obtains \(A_{i+1} = \hat{Q}_{i+1}^T A \hat{Q}_{i+1} \)
 - QR iteration performs QR to obtain \(Q_i R_i = A_i \)
 - Orthogonal iteration performs QR
 \[
 \hat{Q}_{i+1} \hat{R}_{i+1} = A \hat{Q}_i = \hat{Q}_i A = \hat{Q}_i Q_i R_i
 \]
 inductive assumption

 consequently, we can observe that \(R_i = \hat{Q}_i^T \hat{Q}_i^T A \hat{Q}_i \)

- QR iteration performs product \(A_{i+1} = R_i Q_i = \hat{Q}_{i+1}^T A \hat{Q}_{i+1} \)
QR Iteration with Shift

- QR iteration can be accelerated using shifting:

\[Q_i R_i = A_i - \sigma_i I \]
\[A_{i+1} = R_i Q_i + \sigma_i I \]

Note that \(A_{i+1} \) is similar to \(A_i \), since we can reorganize the above as

\[R_i Q_i = Q_i^T (A_i - \sigma_i I) Q_i, \]
\[Q_i (A_{i+1} - \sigma_i I) Q_i^T = Q_i R_i, \]

and observe that \(R_i Q_i \) is similar to \(Q_i R_i \).

- The shift is typically selected to accelerate convergence with respect to a particular eigenvalue:

 We can select the shift as the bottom right element of \(A_i \), which would be the smallest eigenvalue if \(A_i \) is triangular (we have converged). Such shifting should accelerate convergence of the last column of \(A_i \), once finished we should operate only on the first \(n - 1 \) columns, and so on.
QR Iteration Complexity

- QR iteration is accelerated by first reducing to upper-Hessenberg or tridiagonal form:

 Reduction to upper-Hessenberg or tridiagonal in the symmetric case, costs $O(n^3)$ operations and can be done in a similar style to Householder QR.

Given an upper-Hessenberg matrix, $H_i = A_i$

- reduction to upper-triangular requires $n - 1$ Givens rotations, if G_i rotates the $(i + 1)$th row into the ith to eliminate the ith element on the first subdiagonal,

 \[R_i = G_1^T \cdots G_{n-1}^T H_i \]

- computation of $H_{i+1} = RQ$ can be done by application of the $n - 1$ Givens rotations to R from the right $H_{i+1} = R_i G_{n-1} \cdots G_1$.

Both cost $O(n^2)$, for $O(n^3)$ overall if QR iteration converges in $O(n)$ steps.

Given a tridiagonal matrix, the same two general steps are required, but now each step costs $O(n)$, so overall the eigenvalues and eigenvectors of a tridiagonal matrix can be computed with $O(n^2)$ work.
A variety of methods exists for the tridiagonal eigenproblem:

- QR iteration requires $O(1)$ QR factorizations per eigenvalue, $O(n^2)$ cost to get eigenvalues, $O(n^3)$ for eigenvectors. The last cost is not optimal.

- Divide and conquer reduces tridiagonal T by a similarity transformation to a rank-1 perturbation of identity, then computes its eigenvalues using roots of secular equation

\[
T = \begin{bmatrix}
T_1 & t_{n/2+1,n/2}e_1e_{n/2}^T \\
t_{n/2+1,n/2}e_1e_{n/2}^T & T_2
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\hat{T}_1 \\
\hat{T}_2
\end{bmatrix} + t_{n/2+1,n/2}
\begin{bmatrix}
e_{n/2} \\
e_1
\end{bmatrix}
\begin{bmatrix}
e_{n/2}^T \\
e_1^T
\end{bmatrix} = \begin{bmatrix}
Q_1D_1Q_1^T \\
Q_2D_2Q_2^T
\end{bmatrix} + \ldots
\]

\[
= \begin{bmatrix}
Q_1 \\
Q_2
\end{bmatrix}
\begin{bmatrix}
D_1 & D_2 \\
D_2 & D_2
\end{bmatrix} + t_{n/2+1,n/2}
\begin{bmatrix}
Q_1^Te_{n/2} \\
Q_2^Te_1
\end{bmatrix}
\begin{bmatrix}
e_{n/2}^TQ_1 \\
e_1^TQ_2
\end{bmatrix} = \begin{bmatrix}
Q_1^T \\
Q_2^T
\end{bmatrix}
\begin{bmatrix}
D + \alpha uu^T \\
D + \alpha uu^T
\end{bmatrix}
\]

\[
\begin{bmatrix}
Q_1 \\
Q_2
\end{bmatrix} = \begin{bmatrix}
Q_1^T \\
Q_2^T
\end{bmatrix}
\begin{bmatrix}
D + \alpha uu^T \\
D + \alpha uu^T
\end{bmatrix}
\]

\]

\[
= \begin{bmatrix}
Q_1^T \\
Q_2^T
\end{bmatrix}
\begin{bmatrix}
D + \alpha uu^T \\
D + \alpha uu^T
\end{bmatrix}
\]
Solving the Secular Equation for Divide and Conquer

To solve the eigenproblem at each step, the divide and conquer method needs to diagonalize a rank-1 perturbation of a diagonal matrix

\[A = D + \alpha uu^T. \]

The zeros of the characteristic polynomial define the eigenvalues,

\[f(\lambda) = \det(D + \alpha uu^T - \lambda I) = 1 + \alpha u^T(D - \lambda I)^{-1}u = 1 + \alpha \sum_{i=1}^{n} \frac{u_i^2}{d_{ii} - \lambda} = 0. \]

This nonlinear equation can be solved efficiently by a variant of Newton’s method (covered in the next chapter) that uses hyperbolic rather than linear extrapolations at each step.

Major alternatives to divide and conquer include spectral bisection and the MRRR algorithm.
Introduction to Krylov Subspace Methods

- Krylov subspace methods work with information contained in the \(n \times k \) matrix

\[
K_k = \begin{bmatrix}
 x_0 & Ax_0 & \cdots & A^{k-1}x_0
\end{bmatrix}
\]

We seek to best use the information from the matrix vector product results (columns of \(K_k \)) to solve eigenvalue problems.

- The matrix \(K_n^{-1} AK_n \) is a companion matrix \(C \):

Letting \(k_n^{(i)} = A^{i-1}x \), we observe that

\[
AK_n = \begin{bmatrix}
 Ak_n^{(1)} & \cdots & Ak_n^{(n-1)} & Ak_n^{(n)}
\end{bmatrix} = \begin{bmatrix}
 k_n^{(2)} & \cdots & k_n^{(n)} & Ak_n^{(n)}
\end{bmatrix},
\]

therefore premultiplying by \(K_m^{-1} \) transforms the first \(n - 1 \) columns of \(AK_n \) into the last \(n - 1 \) columns of \(I \),

\[
K_n^{-1} AK_n = \begin{bmatrix}
 K_n^{-1}k_n^{(2)} & \cdots & K_n^{-1}k_n^{(n)} & K_n^{-1}Ak_n^{(n)}
\end{bmatrix} = \begin{bmatrix}
 e_2 & \cdots & e_n & K_n^{-1}Ak_n^{(n)}
\end{bmatrix}
\]
Krylov Subspaces

- Given $Q_k R_k = K_k$, we obtain an orthonormal basis for the Krylov subspace,

$$K_k(A, x_0) = \text{span}(Q_k) = \{p(A)x_0 : \deg(p) < k\},$$

where p is any polynomial of degree less than k.

- The Krylov subspace includes the $k - 1$ approximate dominant eigenvectors generated by $k - 1$ steps of power iteration:

 - The approximation obtained from $k - 1$ steps of power iteration starting from x_0 is given by the Rayleigh-quotient of $y = A^k x_0$.
 - This vector is within the Krylov subspace, $y \in K_k(A, x_0)$.
 - Consequently, Krylov subspace methods will generally obtain strictly better approximations of the dominant eigenpair than power iteration.
The $k \times k$ matrix $H_k = Q_k^T AQ_k$ minimizes $\|AQ_k - Q_k H_k\|_2$:

The minimizer X for the linear least squares problem $Q_k X \overset{\sim}{=} AQ_k$ is (via the normal equations) $X = Q_k^T AQ_k = H_k$.

H_k is Hessenberg, because the companion matrix C_k is Hessenberg:

$$H_k = Q_k^T AQ_k = R_k K_k^{-1} A K_k R_k^{-1} = R_k C_k R_k^{-1}$$

is a product of three matrices: upper-triangular R_k, upper-Hessenberg C_k, and upper-triangular R_k^{-1}, which results in upper-Hessenberg H_k.
Rayleigh-Ritz Procedure

The eigenvalues/eigenvectors of H_k are the *Ritz values/vectors*:

\[H_k = XDX^{-1} \]

eigenvalue approximations based on Ritz vectors X are given by $Q_k X$.

The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q_k:

Assuming A is a symmetric matrix with positive eigenvalues, the largest Ritz value $\lambda_{\text{max}}(H_k)$ will be the maximum Rayleigh quotient of any vector in

\[K_k = \text{span}(Q_k), \]

\[\max_{x \in \text{span}(Q_k)} \frac{x^T A x}{x^T x} = \max_{y \neq 0} \frac{y^T Q_k^T A Q_k y}{y^T y} = \max_{y \neq 0} \frac{y^T H_k y}{y^T y} = \lambda_{\text{max}}(H_k), \]

which is the best approximation to $\lambda_{\text{max}}(A) = \max_{x \neq 0} \frac{x^T A x}{x^T x}$ available in K_k.

The quality of the approximation can also be shown to be optimal for other eigenvalues/eigenvectors.

Demo: Arnoldi vs Power Iteration

Activity: Computing the Maximum Ritz Value
Arnoldi Iteration

Arnoldi iteration computes $H = H_n$ directly using the recurrence $q_i^T A q_j = h_{ij}$, where q_l is the lth column of Q_n:

We have that

$$q_i^T A q_j = q_i^T (Q_n H_n Q_n^T) q_j = e_i^T H_n e_j = h_{ij}.$$

After each matrix-vector product, orthogonalization is done with respect to each previous vector:

Given $u_j = A q_j$, compute $h_{ij} = q_i^T u_j$ for each $i \leq j$, forming a column of the H matrix at a time.
Lanczos Iteration

Lanczos iteration provides a method to reduce a symmetric matrix to a tridiagonal matrix:

Arnoldi iteration on a symmetric matrix will result in an upper-Hessenberg matrix H_n as before, except that it must also be symmetric, since

$$H_n^T = (Q_n^T A Q_n)^T = Q_n^T A^T Q_n = Q_n^T A Q_n = H_n,$$

which implies that H_n must be tridiagonal.

After each matrix-vector product, it suffices to orthogonalize with respect to two previous vectors:

Since $h_{ij} = 0$ if $|i - j| > 1$, given $u_j = Aq_j$, it suffices to compute only $h_{jj} = q_j^T u_j$ and $h_{j-1,j} = h_{j,j-1} = q_{j-1}^T u_j$.

Activity: Approximation with Orthogonal Iteration and Lanczos
Cost Krylov Subspace Methods

- The cost of matrix-vector multiplication when the matrix has \(m\) nonzeros is \(m\) multiplications and at most \(m\) additions, so roughly \(2m\) in total.
- The cost of orthogonalization at the \(k\)th iteration of a Krylov subspace method is
 - \(O(nk)\) for \(k\) inner products in Arnoldi,
 - \(O(n)\) in Lanczos, since only 2 orthogonalizations needed.
 - For Arnoldi with \(k\)-dimensional subspace, orthogonalization costs \(O(nk^2)\), matrix-vector products cost \(O(mk)\), so generally desire \(nk < m\).
Restarting Krylov Subspace Methods

- In finite precision, Lanczos generally loses orthogonality, while orthogonalization in Arnoldi can become prohibitively expensive:
 - *Arnoldi cost of orthogonalization dominates if* $k > m/n$.
 - *In Lanczos, reorthogonalizing iterate to previous guesses can ensure orthogonality.*
 - *Selective orthogonalization strategies control when and with respect to what previous columns of* Q, each new iterate $u_j = Aq_j$ *should be orthogonalized.*

- Consequently, in practice, low-dimensional Krylov subspace methods are constructed repeatedly using carefully selected new starting vectors:
 If we wish to find a particular eigenvector isolate some eigenspaces, restarting is beneficial
 - can orthogonalize to previous eigenvector estimates to perform deflation,
 - can pick starting vector as Ritz vector estimate associated with desired eigenpair,
 - given new starting vector, can discard previous Krylov subspace, which helps make storing the needed parts of Q possible.
Generalized Eigenvalue Problem

A generalized eigenvalue problem has the form $Ax = \lambda Bx$,

$$AX = BXD$$

$$B^{-1}A = XDX^{-1}$$

Generalized eigenvalue problems arise frequently, especially in solving partial differential equations.

When A and B are symmetric and B is SPD, we can perform Cholesky on B, multiply A by the inverted factors, and diagonalize it:

$$AX = LL^T XD$$

$$\overbrace{L^{-1} A L^{-T}}_{\hat{A}} \overbrace{L^T X}^{\hat{X}} = \overbrace{L^T X D}^{\hat{X}}$$

Alternative canonical forms and methods exist that are specialized to the generalized eigenproblem.