CS 450: Numerical Analysis
Lecture 5
Chapter 2 – Linear Systems
Solving Linear Systems

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign
Solving Basic Linear Systems

- Solve $Dx = b$ if D is diagonal
 \[x_i = b_i / d_{ii} \text{ with total cost } O(n) \]
- Solve $Qx = b$ if Q is orthogonal
 \[x = Q^T b \text{ with total cost } O(n^2) \]
- Given SVD $A = U\Sigma V^T$, solve $Ax = b$
 - Compute $z = U^T b$
 - Solve $\Sigma y = z$ (diagonal)
 - Compute $x = V^T z$
Solving Triangular Systems

- \(Lx = b \) if \(L \) is lower-triangular is solved by forward substitution:

\[
\begin{align*}
l_{11}x_1 &= b_1 & x_1 &= b_1/l_{11} \\
l_{21}x_1 + l_{22}x_2 &= b_2 & \Rightarrow x_2 = (b_2 - l_{21}x_1)/l_{22} \\
l_{31}x_1 + l_{32}x_2 + l_{33}x_3 &= b_3 & x_3 = (b_3 - l_{31}x_1 - l_{32}x_2)/l_{33}
\end{align*}
\]

- Algorithm can also be formulated recursively by blocks:

\[
\begin{bmatrix}
l_{11} & 0 \\
l_{21} & L_{22}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}
\]

\(x_1 = b_1/l_{11} \), then solve recursively for \(x_2 \) in \(L_{22}x_2 = b_2 - l_{21}x_1 \).
Solving Triangular Systems

- **Existence of solution to** $Lx = b$:

 If some $l_{ii} = 0$, the solution may not exist, and L^{-1} does not exist.

- **Uniqueness of solution**: Even if some $l_{ii} = 0$ and L^{-1} does not exist, the system may have a solution. The solution will not be unique since columns of L are necessarily linearly dependent if a diagonal element is zero. May want to select solution minimizing norm of x.

- **Computational complexity of forward/backward substitution**: The recursive algorithm has the cost recurrence,

 $$T(n) = T(n - 1) + n = \sum_{i=1}^{n} i = n(n + 1)/2.$$

 The total cost is $n^2/2$ multiplications and $n^2/2$ additions to leading order.
Properties of Triangular Matrices

- \(Z = XY \) is lower triangular is \(X \) and \(Y \) are both lower triangular:

\[
\begin{bmatrix}
 z_{11} & z_{12} \\
 z_{21} & Z_{22}
\end{bmatrix} =
\begin{bmatrix}
 x_{11} & x_{21} \\
 y_{11} & y_{21}
\end{bmatrix}
\begin{bmatrix}
 y_{11} & Y_{22} \\
 y_{21}
\end{bmatrix}.
\]

Clearly, \(z_{11} = x_{11}y_{11} \) and \(z_{12} = 0 \), then we proceed by the same argument for the triangular matrix product \(Z_{22} = X_{22}Y_{22} \).

- \(L^{-1} \) is lower triangular if it exists:

We give a constructive proof by providing an algorithm for triangular matrix inversion. We need \(Y = X^{-1} \) so

\[
\begin{bmatrix}
 Y_{11} & Y_{12} \\
 Y_{21} & Y_{22}
\end{bmatrix}
\begin{bmatrix}
 X_{11} & X_{22} \\
 X_{21}
\end{bmatrix} =
\begin{bmatrix}
 I & I
\end{bmatrix},
\]

from which we can deduce

\(Y_{11} = X_{11}^{-1} \), \(Y_{22} = X_{22}^{-1} \), \(Y_{21} = -Y_{22}X_{21}Y_{11} \).
LU Factorization

- An **LU factorization** consists of a unit-diagonal lower-triangular factor L and upper-triangular factor U such that $A = LU$:
 - Unit-diagonal implies each $l_{ii} = 1$, leaving $n(n - 1)/2$ unknowns in L and $n(n + 1)/2$ unknowns in U, for a total of n^2, the same as the size of A.
 - For rectangular matrices $A \in \mathbb{R}^{m \times n}$, one can consider a full LU factorization, with $L \in \mathbb{R}^{m \times \max(m,n)}$ and $U \in \mathbb{R}^{\max(m,n) \times n}$, but it is fully described by a reduced LU factorization, with lower-trapezoidal $L \in \mathbb{R}^{m \times \min(m,n)}$ and upper-trapezoidal $U \in \mathbb{R}^{\min(m,n) \times n}$.

- Given an LU factorization of A, we can solve the linear system $Ax = b$:
 - using forward substitution $Ly = b$
 - using backward substitution to solve $Ux = y$

Backward substitution is the same as forward substitution with a reversal of the ordering of the elements of the vectors and the ordering of the rows/columns of the matrix.
Gaussian Elimination Algorithm

- Algorithm for factorization is derived from equations given by $A = LU$:

\[
\begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & A_{22}
\end{bmatrix} = \begin{bmatrix}
 1 & \\
 l_{21} & L_{22}
\end{bmatrix} \begin{bmatrix}
 u_{11} & u_{12} \\
 & U_{22}
\end{bmatrix} = \begin{bmatrix}
 L_{11} & \\
 L_{21} & L_{22}
\end{bmatrix} \begin{bmatrix}
 U_{11} & U_{12} \\
 & U_{22}
\end{bmatrix}
\]

- First, observe $\begin{bmatrix} u_{11} & u_{12} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \end{bmatrix}$
- To obtain l_{21} compute $l_{21} = a_{21}/u_{11}$
- Obtain L_{22} and U_{22} by recursively computing LU of the Schur complement $S = A_{22} - l_{21}u_{12}$

- The computational complexity of LU is $O(n^3)$:

 Computing $l_{21} = a_{21}/u_{11}$ requires $O(n)$ operations, finding S requires $2n^2$, so to leading order the complexity of LU is

 \[
 T(n) = T(n - 1) + 2n^2 = \sum_{i=1}^{n} 2i^2 \approx 2n^3/3
 \]
Existence of LU factorization

- The LU factorization may not exist: Consider matrix \[
\begin{bmatrix}
3 & 2 \\
6 & 4 \\
0 & 3
\end{bmatrix}
\].

Proceeding with Gaussian elimination we obtain

\[
\begin{bmatrix}
3 & 2 \\
6 & 4 \\
0 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
2 & 1 \\
0 & l_{32}
\end{bmatrix} \begin{bmatrix}
3 & 2 \\
0 & u_{21}
\end{bmatrix}.
\]

Then we need that \(4 = 4 + u_{21}\) so \(u_{21} = 0\), but at the same time \(l_{32}u_{21} = 3\).

More generally, if for any partitioning \[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\] the leading minor is singular (\(\det(A_{11}) = 0\)), \(A\) has no LU factorization.

- Permutation of rows enables us to transform the matrix so the LU factorization does exist:

Gaussian elimination can only fail if dividing by zero. At every recursive step of Gaussian elimination, if the leading entry of the first row is zero, we permute it with a row with an leading nonzero (if \(a_{21} = 0\), we set \(u_{11} = 0\) and \(l_{21} = 0\)).
Gaussian Elimination with Partial Pivoting

- **Partial pivoting** permutes rows to make divisor u_{ii} is maximal at each step:

 Based on our argument above, for any matrix A there exists a permutation matrix P that can permute the rows of A to permit an LU factorization,

 \[PA = LU. \]

 Partial pivoting finds such a permutation matrix P one row at a time. The ith row is selected to maximize the magnitude of the leading element (over elements in the first column), which becomes the entry u_{ii}. This selection ensures that we are never forced to divide by zero during Gaussian elimination and that the magnitude of any element in L is at most 1.

- A row permutation corresponds to an application of a row permutation matrix $P_{jk} = I - (e_j - e_k)(e_j - e_k)^T$:

 If we permute row i_j to be the leading (ith) row at the ith step, the overall permutation matrix is given by

 \[P^T = \prod_{i=1}^{n-1} P_{ii_j}. \]
Partial Pivoting Example

- Let's consider again the matrix \(A = \begin{bmatrix} 3 & 2 \\ 6 & 4 \\ 0 & 3 \end{bmatrix} \).

- The largest magnitude element in the first column is 6, so we select this as our pivot and perform the first step of LU:

\[
\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 6 & 4 \\ 3 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1/2 \\ 0 \end{pmatrix} \begin{pmatrix} 6 & 4 \\ 0 & 2 - (1/2) \cdot 4 \\ 0 & 3 - 0 \cdot 4 \end{pmatrix}
\]

- The Schur complement is \(\begin{pmatrix} 0 & 3 \end{pmatrix}^T \) and we proceed with pivoted LU,

\[
\begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}
\]

- The overall LU factorization is then given by \(P_1 \begin{pmatrix} 1 & P_2 \end{pmatrix} A = \begin{pmatrix} 1 & 0 \\ 1/2 & 1 \end{pmatrix} \begin{pmatrix} 6 & 4 \\ 3 \end{pmatrix} \).
Complete Pivoting

- Complete pivoting permutes rows and columns to make divisor u_{ii} is maximal at each step:
 - Partial pivoting ensures that the magnitude of the multipliers satisfies $|l_{21}| = |a_{21}| / |u_{11}| \leq 1$
 - Complete pivoting also gives $||u_{12}||_\infty \leq |u_{11}|$ and consequently $|l_{21}| \cdot ||u_{12}||_\infty = |a_{21}| \cdot ||u_{12}||_\infty / |u_{11}| \leq |a_{21}|$
 - Complete pivoting yields a factorization of the form $LU = PAQ$ where P and Q are permutation matrices

- Complete pivoting is noticeably more expensive than partial pivoting:
 - Partial pivoting requires just $O(n)$ comparison operations and a row permutation
 - Complete pivoting requires $O(n^2)$ comparison operations, which somewhat increases the leading order cost of LU overall
Round-off Error in LU

Let's consider factorization of \[\begin{bmatrix} \epsilon & 1 \\ 1 & 1 \end{bmatrix} \] where \(\epsilon < \epsilon_{\text{mach}} \):

- Without pivoting we would compute
 \[L = \begin{bmatrix} 1 & 0 \\ \frac{1}{\epsilon} & 1 \end{bmatrix}, \quad U = \begin{bmatrix} \epsilon & 1 \\ 0 & 1 - \frac{1}{\epsilon} \end{bmatrix} \]

- Rounding yields
 \[\text{fl}(U) = \begin{bmatrix} \epsilon & 1 \\ 0 & -\frac{1}{\epsilon} \end{bmatrix} \]

- This leads to
 \[L_{\text{fl}}(U) = \begin{bmatrix} \epsilon & 1 \\ 1 & 0 \end{bmatrix}, \text{ a backward error of } \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \]

- Permuting the rows of \(A \) in partial pivoting gives \(PA = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix} \):

- We now compute
 \[L = \begin{bmatrix} 1 & 0 \\ \epsilon & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 1 & 1 \\ 0 & 1 - \epsilon \end{bmatrix}, \text{ so } \text{fl}(U) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \]

- This leads to
 \[L_{\text{fl}}(U) = \begin{bmatrix} 1 & \frac{1}{1+\epsilon} \\ \epsilon & 1 + \epsilon \end{bmatrix}, \text{ a backward error of } \begin{bmatrix} 0 & 0 \\ 0 & \epsilon \end{bmatrix} \]
Error Analysis of LU

- The main source of round-off error in LU is in the computation of the Schur complement:
 - Recall that division is well-conditioned, while addition can be ill-conditioned
 - After \(k \) steps of LU, we are working on Schur complement \(A_{22} - L_{21}U_{12} \) where \(A_{22} \) is \((n - k) \times (n - k)\), \(L_{21} \) and \(U_{12}^T \) are \((n - k) \times k\)
 - Partial pivoting and complete pivoting improve stability by making sure \(L_{21}U_{12} \) is small in norm

- When computed in floating point, absolute backward error \(\delta A \) in LU (so \(\hat{L}\hat{U} = A + \delta A \)) is
 \[
 |\delta a_{ij}| \leq \epsilon_{\text{mach}} (|\hat{L}| \cdot |\hat{U}|)_{ij}
 \]

 For any \(a_{ij} \) with \(j \geq i \) (lower-triangle is similar), we compute

 \[
 a_{ij} - \sum_{k=1}^{i} \hat{l}_{ik} \hat{u}_{kj} = a_{ij} - \langle \hat{l}_i, \hat{u}_j \rangle,
 \]

 which in floating point incurs round-off error at most \(\epsilon_{\text{mach}} \| \hat{l}_i \| \| \hat{u}_j \| \). Using this, for complete pivoting, we can show

 \[
 |\delta a_{ij}| \leq \epsilon_{\text{mach}} n^2 \|A\|_\infty.
 \]
Helpful Matrix Properties

- **Matrix is diagonally dominant**, so \(\sum_{i \neq j} |a_{ij}| \leq |a_{ii}|. \\
 Pivoting is not required if matrix is strictly diagonally dominant \(\sum_{i \neq j} |a_{ij}| < |a_{ii}|. \)

- **Matrix is symmetric positive definite (SPD)**, so \(\forall x \neq 0, x^T A x > 0: \)
 \(L = U \) and pivoting is not required, *Cholesky* algorithm can be used

- **Matrix is symmetric but indefinite**:
 Compute pivoted *LDL* factorization \(P A P^T = LDL^T \)

- **Matrix is banded**, \(a_{ij} = 0 \) if \(|i - j| > b \):
 LU without pivoting and *Cholesky* preserve banded structure and require only \(O(nb^2) \) work.
Solving Many Linear Systems

- Suppose we have computed $A = LU$ and want to solve $AX = B$ where B is $n \times k$ with $k < n$:

 Cost is $O(n^2 k)$ for solving the k independent linear systems

- Supposed we have computed $A = LU$ and now want to solve a perturbed system $(A - uv^T)x = b$:

 Can use the Sherman-Morrison-Woodbury formula

 \[
 (A - uv^T)^{-1} = A^{-1} + \frac{A^{-1}uv^TA^{-1}}{1 - v^TA^{-1}u}
 \]

 - Consequently we have $Ax = b + \frac{uv^TA^{-1}b}{1 - v^TA^{-1}u} = b + \frac{v^TA^{-1}b}{1 - v^TA^{-1}u}u$

 - Need not form A^{-1} or L^{-1} or U^{-1}, suffices to use backward/forward substitution to solve $w^TA = v^T$, i.e. solve $U^TL^Tw = v$ and then solve

 \[
 LUx = b + \left(\frac{w^Tb}{1 - w^Tu}\right)u
 \]

 scalar