Numerical Optimization

- Our focus will be on *continuous* rather than *combinatorial* optimization:

\[
\min_x f(x) \quad \text{subject to} \quad g(x) = 0 \quad \text{and} \quad h(x) \leq 0
\]

- We consider linear, quadratic, and general nonlinear optimization problems:
Local Minima and Convexity

- Without knowledge of the analytical form of the function, numerical optimization methods at best achieve convergence to a local rather than global minimum:

- A set is convex if it includes all points on any line, while a function is (strictly) convex if its (unique) local minimum is always a global minimum:
Existence of Local Minima

▶ *Level sets* are all points for which \(f \) has a given value, *sublevel sets* are all points for which the value of \(f \) is less than a given value:

▶ If there exists a closed and bounded sublevel set in the domain of feasible points, then \(f \) has a global minimum in that set:
Optimality Conditions

▶ If \(x \) is an interior point in the feasible domain and is a local minima,

\[
\nabla f(x) = \begin{bmatrix}
\frac{df}{dx_1}(x) & \cdots & \frac{df}{dx_n}(x)
\end{bmatrix}^T = 0:
\]

▶ Critical points \(x \) satisfy \(\nabla f(x) = 0 \) and can be minima, maxima, or saddle points:
To ascertain whether a critical point x, for which $\nabla f(x) = 0$, is a local minima, consider the Hessian matrix:

If x^* is a minima of f, then $H_f(x^*)$ is positive semi-definite:
Optimality on Feasible Region Border

- Given an equality constraint $g(x) = 0$, it is no longer necessarily the case that $\nabla f(x^*) = 0$. Instead, it may be that directions in which the gradient decreases lead to points outside the feasible region:

$$\exists \lambda \in \mathbb{R}^n, \quad -\nabla f(x^*) = J^T_g(x^*)\lambda$$

- Such \textit{constrained minima} are critical points of the Lagrangian function $\mathcal{L}(x, \lambda) = f(x) + \lambda^T g(x)$, so they satisfy:

$$\nabla \mathcal{L}(x^*, \lambda) = \begin{bmatrix} \nabla f(x^*) + J^T_g(x^*)\lambda \\ g(x^*) \end{bmatrix} = 0$$
The condition number of solving a nonlinear equations is $1/f'(x^*)$, however for a minimizer x^*, we have $f'(x^*) = 0$, so conditioning of optimization is inherently bad:

To analyze worst case error, consider how far we have to move from a root x^* to perturb the function value by ϵ:
Golden Section Search

- Given bracket \([a, b]\) with a unique minimum (\(f\) is *unimodal* on the interval), *golden section search* considers points \(f(x_1), f(x_2)\), \(a < x_1 < x_2 < b\) and discards subinterval \([a, x_1]\) or \([x_2, b]\):

- Since one point remains in the interval, golden section search selects \(x_1\) and \(x_2\) so one of them can be effectively reused in the next iteration:
Newton’s Method for Optimization

- At each iteration, approximate function by quadratic and find minimum of quadratic function:

\[x_{k+1} - x_k = -\frac{f'(x_k)}{f''(x_k)} \]

- The new approximate guess will be given by \(x_{k+1} - x_k = -\frac{f'(x_k)}{f''(x_k)} \):
Successive Parabolic Interpolation

- Interpolate f with a quadratic function at each step and find its minima:

- The convergence rate of the resulting method is roughly 1.324
Safeguarded 1D Optimization

- Safeguarding can be done by bracketing via golden section search:

- Backtracking and step-size control:
General Multidimensional Optimization

- Direct search methods by simplex (**Nelder-Mead**):

 - Steepest descent: find the minimizer in the direction of the negative gradient:
Convergence of Steepest Descent

- Steepest descent converges linearly with a constant that can be arbitrarily close to 1:

- Given quadratic optimization problem $f(x) = \frac{1}{2}x^T Ax + c^T x$ where A is symmetric positive definite, the error $e_k = x_k - x^*$ satisfies
Gradient Methods with Extrapolation

- We can improve the constant in the linear rate of convergence of steepest descent by leveraging *extrapolation methods*, which consider two previous iterates (maintain *momentum* in the direction $x_k - x_{k-1}$):

- The *heavy ball method*, which uses constant $\alpha_k = \alpha$ and $\beta_k = \beta$, achieves better convergence than steepest descent:
Conjugate Gradient Method

- The *conjugate gradient method* is capable of making the optimal choice of α_k and β_k at each iteration of an extrapolation method:

- *Parallel tangents* implementation of the method proceeds as follows
Conjugate Gradient as a Krylov Subspace Method

- Conjugate Gradient finds the minimizer of \(f(x) = \frac{1}{2} x^T A x + c^T x \) within the Krylov subspace of \(A \):
Newton’s Method

- Newton’s method in n dimensions is given by finding minima of n-dimensional quadratic approximation:
Quasi-Newton Methods

- *Quasi-Newton* methods compute approximations to the Hessian at each step:

- The *BFGS* method is a secant update method, similar to Broyden’s method:
An important special case of multidimensional optimization is **nonlinear least squares**, the problem of fitting a nonlinear function $f_x(t)$ so that $f_x(t_i) \approx y_i$:

We can cast nonlinear least squares as an optimization problem and solve it by Newton’s method:
Gauss-Newton Method

- The Hessian for nonlinear least squares problems has the form:

- The *Gauss-Newton* method is Newton iteration with an approximate Hessian:
Levenberg-Marquardt Method

- The \textit{Levenberg-Marquardt} modifies the Gauss-Newton method to use Tykhonov regularization:

- The scalar μ controls the step size through the least squares problem:
Constrained Optimization Problems

- We now return to the general case of constrained optimization problems:

\[
\min_x f(x) \quad \text{subject to} \quad g(x) = 0 \quad \text{and} \quad h(x) \leq 0
\]

- Generally, we will seek to reduce constrained optimization problems to a series of unconstrained optimization problems:

Lagrangian Duality

- The Lagrangian function with constraints $g(x) = 0$ and $h(x) \leq 0$ is

- The Lagrangian dual problem is an unconstrained optimization problem:

$$
\max_{\lambda} q(\lambda), \quad q(\lambda) = \begin{cases}
\min_x \mathcal{L}(x, \lambda) & \text{if } \lambda \geq 0 \\
-\infty & \text{otherwise}
\end{cases}
$$

The unconstrained optimality condition $\nabla q(\lambda^*) = 0$, implies
Sequential Quadratic Programming

- **Sequential quadratic programming (SQP)** reduces a nonlinear equality constrained problem to a sequence of constrained quadratic programs via a Taylor expansion of the Lagrangian function $L_f(x, \lambda) = f(x) + \lambda^T g(x)$:

- SQP ignores the constant term $L_f(x_k, \lambda_k)$ and minimizes s while treating δ as a Lagrange multiplier:
From a different viewpoint, sequential quadratic programming corresponds to using Newton’s method to solve the nonlinear equations,

\[
\nabla L(x, \lambda) = \begin{bmatrix} \nabla f(x) + J^T g(x) \lambda \\ g(x) \end{bmatrix} = 0
\]
Active Set Methods

To use SQP for an inequality constrained optimization problem, consider at each iteration an *active set* of constraints:

The Karush-Kuhn-Tucker (KKT) optimality conditions given the generalized Lagrangian function $\mathcal{L}(x, \mu, \nu) = f(x) + \mu^T g(x) + \nu^T h(x)$ are

\[
\begin{align*}
\nabla_x \mathcal{L}(x, \lambda) &= 0 \\
g(x) &= 0 \\
h(x) &\leq 0 \\
\nu &\geq 0 \\
\nu^T h(x) &= 0
\end{align*}
\]

at an optimal point, we must have that for either the ith inequality constraint is active, so $h_i(x) = 0$ or it is inactive, but its Lagrange multiplier $\nu_i = 0$.

Penalty Functions

- We can reduce constrained optimization problems to unconstrained ones by modifying the objective function. *Penalty* functions are effective for equality constraints $g(x) = 0$:

- The augmented Lagrangian function provides a more numerically robust approach:
Barrier Functions

- A drawback of penalty function methods is that they can produce infeasible approximate solutions, which is problematic if the objective function is only defined in the feasible region:

- Barrier functions provide an effective way (interior point methods) of working with inequality constraints $h(x) \leq 0$: