Find $\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$:

Since $m \geq n$, the minimizer generally does not attain a zero residual $\mathbf{A} \mathbf{x} - \mathbf{b}$.

We can rewrite the optimization problem constraint via

$$
\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|^2_2 = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \left[(\mathbf{A} \mathbf{x} - \mathbf{b})^T (\mathbf{A} \mathbf{x} - \mathbf{b}) \right]
$$

Given the SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ we have $\mathbf{x}^* = \mathbf{V} \mathbf{\Sigma}^\dagger \mathbf{U}^T \mathbf{b}$, where $\mathbf{\Sigma}^\dagger$ contains the reciprocal of all nonzeros in $\mathbf{\Sigma}$:

- The minimizer satisfies $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mathbf{x}^* \cong \mathbf{b}$ and consequently also satisfies $\mathbf{\Sigma} \mathbf{y}^* \cong \mathbf{d}$ where $\mathbf{y}^* = \mathbf{V}^T \mathbf{x}^*$ and $\mathbf{d} = \mathbf{U}^T \mathbf{b}$.

- The minimizer of the reduced problem is $\mathbf{y}^* = \mathbf{\Sigma}^\dagger \mathbf{d}$, so $y_i = d_i / \sigma_i$ for $i \in \{1, \ldots, n\}$ and $y_i = 0$ for $i \in \{n + 1, \ldots, m\}$.

Conditioning of Linear Least Squares

- Consider fitting a line to a collection of points, then perturbing the points:
 - If our line closely fits all of the points, a small perturbation to the points will not change the ideal fit line (least squares solution) much. Note that, if a least squares solution has a very small residual, any other solution with a residual close to as small, should be close to parallel to this solution.
 - When the points are distributed erratically and do not admit a reasonable linear fit, then the least squares solution has a large residual, and totally different lines may exist with a residual nearly as small. For example, if the points are in a ball around the origin, any linear fit has the same residual. A tiny perturbation could then perturb the least squares solution to be perpendicular to the original.

- LLS is ill-posed for any \(A \), unless we consider solving for a particular \(b \)
 - If \(b \) is entirely outside the span of \(A \) then any perturbation to \(A \) or \(b \) can completely defines the new solution. Similarly, if most of \(b \) is outside the span of \(A \), a perturbation can cause the solution to fluctuate wildly.
 - On other hand, if for a particular \(b \) we can find a solution with (near-)zero residual, a small relative perturbation to \(b \) or \(A \) will have an effect similar to that of a linear system perturbation (growth bounded by \(\kappa(A) = \sigma_{\text{max}}/\sigma_{\text{min}} \)).
Normal Equations

- **Normal equations** are given by solving $A^T Ax = A^T b$:

 If $A^T Ax = A^T b$ then

 $$
 (U \Sigma V^T)^T U \Sigma V^T x = (U \Sigma V^T)^T b
 $$

 $$
 \Sigma^T \Sigma V^T x = \Sigma^T U^T b
 $$

 $$
 V^T x = (\Sigma^T \Sigma)^{-1} \Sigma^T U^T b = \Sigma^\dagger U^T b
 $$

 $$
 x = V \Sigma^\dagger U^T b = x^*
 $$

- However, solving the normal equations is a more ill-conditioned problem than the original least squares algorithm.

 Generally we have $\kappa(A^T A) = \kappa(A)^2$ (the singular values of $A^T A$ are the squares of those in A). Consequently, solving the least squares problem via the normal equations may be unstable because it involves solving a problem that has worse conditioning than the initial least squares problem.
Solving the Normal Equations

- If A is full-rank, then $A^T A$ is symmetric positive definite (SPD):
 - Symmetry is easy to check $(A^T A)^T = A^T A$.
 - A being full-rank implies $\sigma_{\text{min}} > 0$ and further if $A = U \Sigma V^T$ we have
 \[
 A^T A = V^T \Sigma^2 V
 \]
 which implies that rows of V are the eigenvectors of $A^T A$ with eigenvalues Σ^2 since $A^T A V^T = V^T \Sigma^2$.

- Since $A^T A$ is SPD we can use Cholesky factorization, to factorize it and solve linear systems:
 \[
 A^T A = LL^T
 \]
If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that $A = QR$

Given $A^T A = L L^T$, we can take $R = L^T$ and obtain $Q = AL^{-T}$, since

$$
\begin{bmatrix}
L^{-1} & A^T \\
Q^T & Q
\end{bmatrix} = I
$$

implies that Q has orthonormal columns.

A reduced QR factorization (unique part of general QR) is defined so that $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and R is square and upper-triangular. A full QR factorization gives $Q \in \mathbb{R}^{m \times m}$ and $R \in \mathbb{R}^{m \times n}$, but since R is upper triangular, the latter $m - n$ columns of Q are only constrained so as to keep Q orthogonal. The reduced QR factorization is given by taking the first n columns Q and \hat{Q} the upper-triangular block of R, \hat{R}.
Gram-Schmidt Orthogonalization

- Classical Gram-Schmidt process for QR:
 The Gram-Schmidt process orthogonalizes a rectangular matrix, i.e. it finds a set of orthonormal vectors with the same span as the columns of the given matrix. If a_i is the ith column of the input matrix, the ith orthonormal vector (ith column of Q) is

 $$ q_i = b_i / ||b_i||_2, $$

 where

 $$ b_i = a_i - \sum_{j=1}^{i-1} \langle q_j, a_i \rangle q_j. $$

- Modified Gram-Schmidt process for QR:
 Better numerical stability is achieved by orthogonalizing each vector with respect to each previous vector in sequence (modifying the vector prior to orthogonalizing to the next vector), so $b_i = MGS(a_i, i - 1)$, where $MGS(d, 0) = d$ and

 $$ MGS(d, j) = MGS(d - \langle q_j, d \rangle q_j, j - 1) $$
A Householder transformation $Q = I - 2uu^T$ is an orthogonal matrix defined to annihilate entries of a given vector z, so $||z||_2Qe_1 = z$:

- Householder QR achieves unconditional stability, by applying only orthogonal transformations to reduce the matrix to upper-triangular form.
- Householder transformations (reflectors) are orthogonal matrices, that reduce a vector to a multiple of the first elementary vector, $\alpha e_1 = Qz$.
- Because multiplying a vector by an orthogonal matrix preserves its norm, we must have that $|\alpha| = ||z||_2$.
- As we will see, this transformation can be achieved by a rank-1 perturbation of identify of the form $Q = I - 2uu^T$ where u is a normalized vector.
- Householder matrices are both symmetric and orthogonal implying that $Q = Q^T = Q^{-1}$.

Imposing this form on Q leaves exactly two choices for u given z,

$$u = \frac{z \pm ||z||_2e_1}{||z \pm ||z||_2e_1||_2}$$
Applying Householder Transformations

- The product $x = Qw$ can be computed using $O(n)$ operations if Q is a Householder transformation

$$x = (I - 2uu^T)w = w - 2\langle u, w \rangle u$$

- Householder transformations are also called *reflectors* because their application reflects a vector along a hyperplane (changes sign of component of w that is parallel to u)

 - $I - uu^T$ would be an elementary projector, since $\langle u, w \rangle u$ gives component of w pointing in the direction of u and
 $$x = (I - uu^T)w = w - \langle u, w \rangle u$$ subtracts it out.

 - On the other hand, Householder reflectors give
 $$y = (I - 2uu^T)w = w - 2\langle u, w \rangle u = x - \langle u, w \rangle u$$
 which reverses the sign of that component, so that $||y||_2 = ||w||_2$.