CS 450: Numerical Analysis1

Numerical Optimization

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).
Our focus will be on *continuous* rather than *combinatorial* optimization:

\[
\min_x f(x) \quad \text{subject to} \quad g(x) = 0 \quad \text{and} \quad h(x) \leq 0
\]

where \(f \in \mathbb{R}^n \rightarrow \mathbb{R} \) is assumed to be differentiable.

- Without the constraints, i.e. with \(g = 0 \) and \(h = 0 \), the problem is unconstrained.
- With constraints, the constrained optimization problem restricts the solution to elements of the feasible region: \(\{x : g(x) = 0 \text{ and } h(x) \leq 0\} \).

We consider linear, quadratic, and general nonlinear optimization problems:

- If \(f \), \(g \), and \(h \) are affine (linear and constant terms only) then we have linear programming problem.
- If \(f \) is quadratic while \(g \) and \(h \) are linear, then we have a quadratic programming problem, for which specialized methods exist.
- Generally, we have a nonlinear programming problem.
Local Minima and Convexity

- Without knowledge of the analytical form of the function, numerical optimization methods at best achieve convergence to a *local* rather than *global* minimum:

 If the input domain is infinite or the global minimum is in an infinitesimally narrow trough, it may be impossible to find the global minimum in finite time.

- A set is *convex* if it includes all points on any line, while a function is (strictly) convex if its (unique) local minimum is always a global minimum:

 - **Set S is convex if**

 \[
 \forall x, y \in S, \quad \alpha \in [0, 1], \quad \alpha x + (1 - \alpha)y \in S.
 \]

 - **Function f is convex if**

 \[
 f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y).
 \]

 - **A function may have a unique global minima but not be convex.**
Existence of Local Minima

- **Level sets** are all points for which f has a given value, **sublevel sets** are all points for which the value of f is less than a given value:

 \[
 L(z) = \{ x : f(x) = z \}
 \]

 \[
 S(z) = \{ x : f(x) \leq z \}
 \]

- If there exists a closed and bounded sublevel set in the domain of feasible points, then f has a global minimum in that set:

 Need a value z such that $S(z)$ has finite size, is contiguous, and includes its own boundary.
Optimality Conditions

- If x is an interior point in the feasible domain and is a local minima,

$$\nabla f(x) = \begin{bmatrix} \frac{df}{dx_1}(x) & \cdots & \frac{df}{dx_n}(x) \end{bmatrix}^T = 0 :$$

 - If $\frac{df}{dx_i}(x) < 0$ an infinitesimal increment to x_i improves the solution,
 - if $\frac{df}{dx_i}(x) > 0$ an infinitesimal decrement to x_i improves the solution.

- **Critical points** x satisfy $\nabla f(x) = 0$ and can be minima, maxima, or saddle points:

 *For scalar function f, can distinguish the three by considering sign of $f''(x)$.***
To ascertain whether a critical point x, for which $\nabla f(x) = 0$, is a local minima, consider the **Hessian matrix**:

$$H_f(x) = J_{\nabla f}(x) = \begin{bmatrix}
\frac{d^2 f}{dx_1^2}(x) & \ldots & \frac{d^2 f}{dx_1 dx_n}(x) \\
\vdots & \ddots & \vdots \\
\frac{d^2 f}{dx_n dx_1}(x) & \ldots & \frac{d^2 f}{dx_n^2}(x)
\end{bmatrix}$$

The Hessian matrix is always symmetric.

If x^* is a minima of f, then $H_f(x^*)$ is positive semi-definite:

If $H_f(x^*)$ is not positive semi-definite, there exists normalized vector s such that $s^T H_f(x^*) s < 0$, which means that for a sufficiently small α, $\hat{x} = x^* + \alpha s$ will have be a better solution, $f(\hat{x}) < f(x^*)$, since the gradient is zero at x^* and decreases for an infinitesimal perturbation of x^* in the direction s.
Optimality on Feasible Region Border

- Given an equality constraint \(g(x) = 0 \), it is no longer necessarily the case that \(\nabla f(x^*) = 0 \). Instead, it may be that directions in which the gradient decreases lead to points outside the feasible region:

\[
\exists \lambda \in \mathbb{R}^n, \quad -\nabla f(x^*) = J^T_g(x^*)\lambda
\]

- \(\lambda \) are referred to as the Lagrange multipliers.
- This condition implies that at \(x^* \), the direction in which \(f \) decreases is in the span of directions moving along which would exit the feasible region.

- Such constrained minima are critical points of the Lagrangian function \(\mathcal{L}(x, \lambda) = f(x) + \lambda^T g(x) \), so they satisfy:

\[
\nabla \mathcal{L}(x^*, \lambda) = \begin{bmatrix} \nabla f(x^*) + J^T_g(x^*)\lambda \\ g(x^*) \end{bmatrix} = 0
\]

Seeking \(\lambda^* \) to obtain a function \(k(x) = \mathcal{L}(x, \lambda^*) \) with maximum global minimum is the dual optimization problem.
Sensitivity and Conditioning

▶ The condition number of solving a nonlinear equations is \(1/f'(x^*) \), however for a minimizer \(x^* \), we have \(f'(x^*) = 0 \), so conditioning of optimization is inherently bad:

Consider perturbation of function values for a function that changes slowly near the minimum.

▶ To analyze worst case error, consider how far we have to move from a root \(x^* \) to perturb the function value by \(\epsilon \):

\[
\epsilon = f(x^* + h) - f(x^*) = f'(x^*)h + \frac{1}{2} f''(x^*)h^2 + O(h^3)
\]

▶ so the function value changes by \(\frac{1}{2} f''(x^*)h^2 \), which implies we need \(h = O(\sqrt{\epsilon}) \),

▶ a perturbation to the function value in the \(k \)th significant digit, could result in the solution changing in the \(k/2 \)th significant digit.
Golden Section Search

Given bracket \([a, b]\) with a unique minimum (\(f\) is unimodal on the interval), golden section search considers points \(f(x_1), f(x_2)\), \(a < x_1 < x_2 < b\) and discards subinterval \([a, x_1]\) or \([x_2, b]\):

- If a function is strictly convex and bounded on \([a, b]\), it is unimodal on that interval, but a unimodal function may be non-convex.
- Because the function is unimodal, if we have \(f(x_1) < f(x_2)\) then the unique local minima \(f\) in \([a, b]\) has to be in the interval \([a, x_2]\).
- So, if \(f(x_1) < f(x_2)\) can restrict search to \([a, x_2]\) and otherwise to \([x_1, b]\).

Since one point remains in the interval, golden section search selects \(x_1\) and \(x_2\) so one of them can be effectively reused in the next iteration:

- For example, when \(f(x_1) > f(x_2)\), \(x_2\) is inside \([x_1, b]\) and we would like \(x_2\) to serve as the \(x_1\) for the next iteration.
- To ensure this, and minimize resulting interval length, we pick \(x_2 = a + (b - a)(\sqrt{5} - 1)/2\) and \(x_1 = b - (b - a)(\sqrt{5} - 1)/2\).
- Consequently, the convergence of golden section search is linear with constant \((\sqrt{5} - 1)/2\) per function evaluation.
Newton’s Method for Optimization

At each iteration, approximate function by quadratic and find minimum of quadratic function:

Pick quadratic function \(\hat{f} \) *as first three terms of Taylor expansion of* \(f \) *about* \(x_k \), *matching value and first two derivatives of* \(f \) *at* \(x_k \).*

The new approximate guess will be given by \(x_{k+1} - x_k = -f'(x_k)/f''(x_k) \):

\[
f(x) \approx \hat{f}(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2} f''(x_k)(x - x_k)^2
\]

since the function is quadratic, we can find its unique critical point to find its minima,

\[
\hat{f}'(x_{k+1}) = f'(x_k) + f''(x_k)(x_{k+1} - x_k) = 0.
\]
Successive Parabolic Interpolation

- Interpolate f with a quadratic function at each step and find its minima: Given three points, there is a unique quadratic function interpolating them.
- The convergence rate of the resulting method is roughly 1.324

 By comparison, the convergence of golden section search is linear with a constant of 0.618, while Newton’s method converges quadratically.
Safeguarded 1D Optimization

- Safeguarding can be done by bracketing via golden section search:
 Combination of Newton and golden section search
 - achieves quadratic convergence locally,
 - is guaranteed convergence provided unimodality of function.

- Backtracking and step-size control:
 - Can take smaller step \(x_{k+1} = x_k - \alpha_k f'(x_k)/f''(x_k) \) for some \(\alpha_k < 1 \).
 - Can backtrack and choose smaller \(\alpha_k \) if \(f(x_{k+1}) > f(x_k) \).
Direct search methods by simplex (**Nelder-Mead**):

Form a \(n \)-point polytope in \(n \)-dimensional space and adjust worst point (highest function value) by moving it along a line passing through the centroid of the remaining points.

Steepest descent: find the minimizer in the direction of the negative gradient:

\[
\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)
\]

such that \(f(\mathbf{x}_{k+1}) = \min_{\alpha_k} f(\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)) \), *i.e. perform a line search (solve 1D optimization problem) in the direction of the negative gradient.*
Convergence of Steepest Descent

- Steepest descent converges linearly with a constant that can be arbitrarily close to 1:
 - Convergence is slow locally, in the worst case, and generally depends on the Hessian near the minima.
 - If the gradient is changing quickly, it serves as good approximation only within a small local neighborhood, so the line search may result in arbitrarily small steps.
- Given quadratic optimization problem \(f(x) = \frac{1}{2}x^T A x + c^T x \) where \(A \) is symmetric positive definite, the error \(e_k = x_k - x^* \) satisfies
 \[
 \|e_{k+1}\|_A = e_{k+1}^T A e_{k+1} = \frac{\sigma_{\text{max}}(A) - \sigma_{\text{min}}(A)}{\sigma_{\text{max}}(A) + \sigma_{\text{min}}(A)} \|e_k\|_A
 \]
- When sufficiently close to a local minima, general nonlinear optimization problems are described by such an SPD quadratic problem.
- Convergence rate depends on the conditioning of \(A \), since
 \[
 \frac{\sigma_{\text{max}}(A) - \sigma_{\text{min}}(A)}{\sigma_{\text{max}}(A) + \sigma_{\text{min}}(A)} = \frac{\kappa(A) - 1}{\kappa(A) + 1}.
 \]
Gradient Methods with Extrapolation

We can improve the constant in the linear rate of convergence of steepest descent by leveraging *extrapolation methods*, which consider two previous iterates (maintain *momentum* in the direction $x_k - x_{k-1}$):

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \beta_k (x_k - x_{k-1})$$

The *heavy ball method*, which uses constant $\alpha_k = \alpha$ and $\beta_k = \beta$, achieves better convergence than steepest descent:

$$\|e_{k+1}\|_A = \frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1} \|e_k\|_A$$

Nesterov’s gradient optimization method is another instance of an extrapolation method that provides further improved optimality guarantees.
Conjugate Gradient Method

- The **conjugate gradient method** is capable of making the optimal choice of α_k and β_k at each iteration of an extrapolation method:

$$
(\alpha_k, \beta_k) = \arg\min_{\alpha_k, \beta_k} \left[f \left(x_k - \alpha_k \nabla f(x_k) + \beta_k (x_k - x_{k-1}) \right) \right]
$$

- For SPD quadratic programming problems, conjugate gradient is an optimal 1st order method, converging in n iterations.

- It implicitly computes Lanczos iteration, searching along A-orthogonal directions at each step.

- **Parallel tangents** implementation of the method proceeds as follows

 1. Perform a step of steepest descent to generate \hat{x}_k from x_k.
 2. Generate x_{k+1} by minimizing over the line passing through x_{k-1} and \hat{x}_k.
Krylov Optimization

Conjugate Gradient finds the minimizer of \(f(x) = \frac{1}{2} x^T A x + c^T x \) within the Krylov subspace of \(A \):

- It constructs Krylov subspace \(K_k(A, c) = \text{span}(c, Ac, \ldots, A^{r-1}c) \).
- At the \(k \)th step conjugate gradient yields iterate

\[
x_k = -||c||_2 Q_k T_k^{-1} e_1,
\]

where \(Q_k \) are the Lanczos vectors associated with \(K_k(A, c) \) and \(T_k = Q_k^T AQ_k \).

This choice of \(x_k \) minimizes \(f(x) \) since

\[
\min_{x \in K_k(A, c)} f(x) = \min_{y \in \mathbb{R}^k} f(Q_k y) = \min_{y \in \mathbb{R}^k} y^T Q_k A Q_k y + c^T Q_k y = \min_{y \in \mathbb{R}^k} y^T T_k y + ||c||_2 e_1^T y
\]

is minimized by \(y = -||c||_2 T_k^{-1} e_1 \).
Newton’s Method

- Newton’s method in n dimensions is given by finding minima of n-dimensional quadratic approximation:

$$f(x_k + s) \approx \hat{f}(s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H_f(x_k) s.$$

The minima of this function can be determined by identifying critical points

$$0 = \nabla \hat{f}(s) = \nabla f(x_k) + H_f(x_k) s,$$

thus to determine s we solve the linear system,

$$H_f(x_k) s = -\nabla f(x_k).$$

Assuming invertibility of the Hessian, we can write the Newton’s method iteration as

$$x_{k+1} = x_k - H_f(x_k)^{-1} \nabla f(x_k).$$

Quadratic convergence follows by equivalence to Newton’s method for solving nonlinear system of optimality equations $\nabla f(x) = 0$.

Demo: Newton’s Method in n dimensions
Quasi-Newton Methods

- **Quasi-Newton** methods compute approximations to the Hessian at each step:

\[x_{k+1} = x_k - \alpha_k B_k^{-1} \nabla f(x_k) \]

where \(\alpha_k \) is a line search parameter. Quasi-Newton methods can be more robust than Newton’s method, as the Newton’s method step can lead to a direction in which the objective function is strictly increasing.

- The **BFGS** method is a secant update method, similar to Broyden’s method:

 - At each iteration, perform a rank-2 update to \(B_k \) using \(s_k = x_{k+1} - x_k \) and \(y_k = \nabla f(x_{k+1}) - \nabla f(x_k) \):

\[
B_{k+1} = B_k + \frac{y_k y_k^T}{y_k^T s_k} - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k}
\]

 - Can update inverse with \(O(n^2) \) work, but it's more stable and efficient to update a symmetric indefinite factorization.
 - The BFGS method also preserves symmetry of the Hessian approximation.
Nonlinear Least Squares

An important special case of multidimensional optimization is nonlinear least squares, the problem of fitting a nonlinear function $f_x(t)$ so that $f_x(t_i) \approx y_i$:

For example, consider fitting $f_{[x_1,x_2]}(t) = x_1 \sin(x_2 t)$ so that

$$
\begin{bmatrix}
 f_{[x_1,x_2]}(1.5) \\
 f_{[x_1,x_2]}(1.9) \\
 f_{[x_1,x_2]}(3.2)
\end{bmatrix}
\approx
\begin{bmatrix}
 -1.2 \\
 4.5 \\
 7.3
\end{bmatrix}.
$$

We can cast nonlinear least squares as an optimization problem and solve it by Newton’s method:

Define residual vector function $r(x)$ so that $r_i(x) = y_i - f_x(t_i)$ and minimize

$$
\phi(x) = \frac{1}{2} \| r(x) \|_2^2 = \frac{1}{2} r(x)^T r(x).
$$

Now the gradient is $\nabla \phi(x) = J_r(x) r(x)$ and the Hessian is

$$
H_{\phi}(x) = J_r^T(x) J_r(x) + \sum_{i=1}^m r_i(x) H_{r_i}(x).
$$
The Hessian for nonlinear least squares problems has the form:

\[H_\phi(x) = J_r^T(x)J_r(x) + \sum_{i=1}^{m} r_i(x)H_{r_i}(x). \]

The second term is small when the residual function \(r(x) \) is small, so approximate

\[H_\phi(x) \approx \hat{H}_\phi(x) = J_r^T(x)J_r(x). \]

The Gauss-Newton method is Newton iteration with an approximate Hessian:

\[x_{k+1} = x_k - \hat{H}_\phi(x_k)^{-1}\nabla f(x_k) = x_k - (J_r^T(x_k)J_r(x_k))^{-1}J_r(x_k)r(x_k). \]

Recognizing the normal equations, we interpret the Gauss-Newton method as solving linear least squares problems

\[J_r(x_k)s_k \approx r(x_k), \quad x_{k+1} = x_k + s_k. \]

The Levenberg-Marquardt method incorporates Tykhonov regularization into the linear least squares problems within the Gauss-Newton method.
Constrained Optimization Problems

We now return to the general case of constrained optimization problems:

\[
\min_x f(x) \quad \text{subject to} \quad g(x) = 0 \quad \text{and} \quad h(x) \leq 0
\]

When \(f \) is quadratic, while \(h, g \) is linear, this is a quadratic optimization problem.

Generally, we will seek to reduce constrained optimization problems to a series of unconstrained optimization problems:

- **sequential quadratic programming**: solve an unconstrained quadratic optimization problem at each iteration,
- **penalty-based methods**: solve a series of more complicated (more ill-conditioned) unconstrained optimization problems,
- **active set methods**: define sequence of optimization problems with inequality constrains ignored or treated as equality constraints.
Sequential Quadratic Programming

- **Sequential quadratic programming** (SQP) corresponds to using Newton's method to solve the equality constrained optimality conditions, by finding critical points of the Lagrangian function $\mathcal{L}(x, \lambda) = f(x) + \lambda^T g(x)$,

\[
\nabla \mathcal{L}(x, \lambda) = \begin{bmatrix}
\nabla f(x) + J_g^T(x) \lambda \\
J_g(x)
\end{bmatrix} = 0
\]

- At each iteration, SQP computes $[x_{k+1} \lambda_{k+1}] = [x_k \lambda_k] + [s_k \delta_k]$ by solving

\[
J_L(x_k, \lambda_k) \begin{bmatrix}
s_k \\
\delta_k
\end{bmatrix} = -\nabla \mathcal{L}(x_k, \lambda_k)
\]

where

\[
J_L(x_k, \lambda_k) = \begin{bmatrix}
B(x_k, \lambda_k) & J_g^T(x_k) \\
J_g(x_k) & 0
\end{bmatrix} \quad \text{with} \quad B(x, \lambda) = H_f(x) + \sum_{i=1}^{m} \lambda_i H_{g_i}(x)
\]
Inequality Constrained Optimality Conditions

- The Karush-Kuhn-Tucker (KKT) conditions hold for local minima of a problem with equality and inequality constraints, the key conditions are
 - First, any minima x^* must be a feasible point, so $g(x^*) = 0$ and $h(x^*) \leq 0$.
 - We say the ith inequality constraint is active at a minima x^* if $h_i(x^*) = 0$.
 - The collection of equality constraints and active inequality constraints q^*, satisfies $q^*(x^*) = 0$.
 - The negative gradient of the objective function at the minima must be in the row span of the Jacobian of this collection of constraints:
 $$-\nabla f(x^*) = J^T_{q^*}(x^*)\lambda^*$$ where λ^* are Lagrange multipliers of constraints in q^*.

- To use SQP for an inequality constrained optimization problem, consider at each iteration an active set of constraints:
 - Active set q_k contains all equality constraints and all inequality constraints that are exactly satisfied or violated at x_k.
 - Perform one step of Newton’s method to minimize $L_k(x, \lambda) = f(x) + \lambda^T q_k(x)$ with respect to x and λ, then update active set.
 Penalty Functions

- Alternatively, we can reduce constrained optimization problems to unconstrained ones by modifying the objective function. *Penalty* functions are effective for equality constraints $g(x) = 0$:

 $$ \phi_\rho(x) = f(x) + \frac{1}{2} \rho g(x)^T g(x) $$

 is a simple merit function, and its solutions x_ρ^ satisfy* $\lim_{\rho \to \infty} x_\rho^* = x^*$. *However, the Hessian of ϕ_ρ becomes increasingly ill-conditioned for large ρ, leading to slow convergence.*

- The augmented Lagrangian function provides a more numerically robust approach:

 $$ \mathcal{L}_\rho(x, \lambda) = f(x) + \lambda^T g(x) + \frac{1}{2} \rho g(x)^T g(x) $$
Barrier Functions

- **Barrier functions (interior point methods)** provide an effective way of working with inequality constraints \(h(x) \leq 0 \):
 - Provided we start at a feasible point, modify objective function so it diverges to \(\infty \) when approaching border of feasible region.
 - **Inverse barrier function:**
 \[
 \phi_\mu(x) = f(x) - \mu \sum_{i=1}^{m} \frac{1}{h_i(x)}.
 \]
 - **Logarithmic barrier function:**
 \[
 \phi_\mu(x) = f(x) - \mu \sum_{i=1}^{m} \log(-h_i(x)).
 \]
 - When using sufficiently small steps, we have \(x^*_\mu \to x^* \) as \(\mu \to 0 \).