CS 450: Numerical Analysis1
Numerical Integration and Differentiation

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).
Integrability and Sensitivity

- Function f is integrable if continuous and bounded, in practice a finite number of discontinuities is also ok:

 Seek to compute $I(f) = \int_{a}^{b} f(x) \, dx$, define $\|f\|_\infty = \max_{x \in [a,b]} |f(x)|$

- The condition number of integration is bounded by the distance $b - a$:

 Suppose the input function is perturbed $\hat{f} = f + \delta f$, then
 \[
 \delta I = |I(\hat{f}) - I(f)|
 \leq |I(\delta f)|
 \leq (b - a)\|\delta f\|_\infty
 \]

 Note that this result does not depend on the magnitude of f or its derivatives, which means integration is generally very well-conditioned, which makes sense since integration corresponds to averaging.
Quadrature Rules

- To approximate the integral $I(f)$, compute a weighted sum of points:

$$Q_n(f) = \sum_{i=1}^{n} w_i f(x_i)$$

- $\{x_i\}_{i=1}^{n}$ are quadrature nodes or abscissas, $\{w_i\}_{i=1}^{n}$ are quadrature weights.
- Quadrature rule is closed if $x_1 = a, x_n = b$ and open otherwise.
- Rule is progressive if nodes of Q_n are a subset of those of Q_{n+1}.

- For a fixed set of n nodes, unique quadrature weights give exact $(n-1)$-degree quadrature rule:

The rule is exact for all $(n-1)$-degree polynomials. Express the unique $(n-1)$-degree polynomial interpolant in the Lagrange basis $p(x) = \sum_{i=1}^{n} \phi_i(x) f(x_i)$. The quadrature rule is defined by

$$Q_n(f) = I(p(x)) = \sum_{i=1}^{n} \left(\sum_{i=1}^{n} w_i f(x_i) \right)$$
Quadrature Rules and Error

- Quadrature weights can be alternatively determined for a rule by solving the moment equations:

\[V(x, \{\phi_i\}_{i=1}^n)w = y(\{\phi_i\}_{i=1}^n), \text{ where } y_i = I(\phi_i) \]

- We can approximate the error bound for a polynomial quadrature rule by

\[
|I(f) - Q_n(f)| = |I(f - p_{n-1}(x))| \\
\leq (b - a)\|f - p_{n-1}\|_{\infty} \\
\leq \frac{b - a}{4n} h^n \|f^{(n)}\|_{\infty}
\]

where \(h = \max_i(x_{i+1} - x_i) \)
Newton-Cotes Quadrature

- **Newton-Cotes** quadrature rules are defined by equispaced nodes on $[a, b]$:

 - **open**: $x_i = a + i(b - a)/(n + 1)$,
 - **closed**: $x_i = a + (i - 1)(b - a)/(n - 1)$.

- The **midpoint rule** is the $n = 1$ open Newton-Cotes rule:

 $$M(f) = (b - a)f \left(\frac{a + b}{2} \right)$$

- The **trapezoid rule** is the $n = 2$ closed Newton-Cotes rule:

 $$T(f) = \frac{(b - a)}{2} (f(a) + f(b))$$

- **Simpson’s rule** is the $n = 3$ closed Newton-Cotes rule:

 $$S(f) = \frac{b - a}{6} \left(f(a) + 4f \left(\frac{a + b}{2} \right) + f(b) \right)$$
Error in Newton-Cotes Quadrature

- Consider the Taylor expansion of \(f \) about the midpoint of the integration interval \(m = (a + b)/2 \):

\[
f(x) = f(m) + f'(m)(x - m) + \frac{f''(m)}{2}(x - m)^2 + \ldots
\]

Integrating the Taylor approximation of \(f \), we note that the odd terms drop,

\[
I(f) = f(m)(b - a) + f''(m) \left(\frac{b - a}{24} \right)^3 + O((b - a)^5)
\]

- The midpoint rule is third-order accurate (first degree).
- The trapezoid rule is also first degree, despite using higher-degree polynomial interpolant approximation.
- Error can be conveniently approximated by difference of two rules,

\[
T(f) - M(f) \approx 3E(f).
\]
Conditioning of Newton-Cotes Quadrature

- We can ascertain stability of quadrature rules, by considering the amplification of a perturbation \(\hat{f} = f + \delta f \):

\[
|Q_n(\hat{f}) - Q_n(f)| = |Q_n(\delta f)|
= \sum_{i=1}^{n} w_i \delta f(x_i)
\leq ||w||_1 ||\delta f||_\infty.
\]

Note that we always have \(\sum_i w_i = b - a \), since the quadrature rule must be correct for a constant function. So if \(w \) is positive \(||w||_1 = b - a \), the quadrature rule is stable, i.e. it matches the conditioning of the problem.

- Newton-Cotes quadrature rules have at least one negative weight for any \(n \geq 11 \): More generally, \(||w||_1 \to \infty \) as \(n \to \infty \) for fixed \(b - a \). This means that the Newton-Cotes rules can be ill-conditioned.
To obtain a more stable quadrature rule, we need to ensure the integrated interpolant is well-behaved as n increases:

Chebyshev quadrature nodes ensure that interpolant polynomial has bounded coefficients so long as f is bounded, since the Vandermonde system defining its coefficients is well-conditioned. Formally, it can be shown that $w_i > 0$ for Chebyshev-node (Clenshaw-Curtis) quadrature.
A quadrature rule provides x and w so as to approximate

$$I(f) \approx Q_n(f) = \langle w, y \rangle,$$

where $y_i = f(x_i)$

Q_n integrates the $(n - 1)$-degree polynomial interpolant through f, We note that y can be obtained from the Vandermonde system,

$$\langle w, y \rangle = Q_n(f) = I(p_{n-1}) = \left[\int_a^b \phi_1(x)dx \cdots \int_a^b \phi_n(x)dx \right] V(x, \{\phi_i\}_{i=1}^n)^{-1} y.$$

Thus to obtain w, we need to solve the linear system,

$$V(x, \{\phi_i\}_{i=1}^n)^T w = \left[\int_a^b \phi_1(x)dx \cdots \int_a^b \phi_n(x)dx \right]^T,$$

which is independent of y.

Gaussian Quadrature

- So far, we have only considered quadrature rules based on a fixed set of nodes, but we can also choose a set of nodes to improve accuracy:

 *Choice of nodes gives additional n parameters for a total of $2n$ degrees of freedom, permitting representation of polynomials of degree $2n - 1$.

- The unique n-point Gaussian quadrature rule is defined by the solution of the nonlinear form of the moment equations in terms of both x and w:

 *Given any complete basis, we seek to solve the nonlinear equations,

 \[V(x, \{\phi_i\}_{i=1}^{2n+1})^T w = y(\{\phi_i\}_{i=1}^{2n+1}), \quad \text{where} \quad y_i = I(\phi_i) \]

 For fixed x, we have an overdetermined system of linear equations for w, but these nonlinear equations generally have a unique solution (x^, w^*).
Gaussian quadrature rules are hard to compute, but can be enumerated for a fixed interval, e.g. $a = 0, b = 1$, so it suffices to transform the integral to $[0, 1]$. We can transform the integral as follows,

$$I(f) = \int_{a}^{b} f(x) \, dx = \int_{0}^{1} g(t) \, dt \text{ where } f(x) = g \left(\frac{x + b - a}{b - a} \right).$$

Gaussian quadrature rules are accurate and stable but not progressive (nodes cannot be reused to obtain higher-degree approximation).

- maximal degree is obtained
- weights are always positive (perfect conditioning)
Progressive Gaussian-like Quadrature Rules

- **Kronod** quadrature rules construct $(2n + 1)$-point quadrature K_{2n+1} that is progressive w.r.t. Gaussian quadrature rule G_n

 - $(2n + 1)$-point Kronod rule is degree $3n + 1$, Gaussian quadrature rule would be of degree $4n + 1$.

 - Kronod rule points are optimal chosen to reuse all points of G_n, so $n + 1$ rather than $2n + 1$ new evaluations are necessary.

- **Patterson** quadrature rules use $2n + 2$ more points to extend $(2n + 1)$-point Kronod rule to degree $6n + 4$, while reusing all $2n + 1$ points.

- Gaussian quadrature rules are in general open, but Gauss-Radau and Gauss-Lobatto rules permit including end-points:

 Gauss-Radau uses one of two end-points as a node, while Gauss-Lobatto quadrature uses both.
Composite and Adaptive Quadrature

- Composite quadrature rules are obtained by integrating a piecewise interpolant of f:

 For example, we can derive simple composite Newton-Cotes rules by partitioning the domain into sub-intervals $[x_i, x_{i+1}]$:

 - **Composite midpoint rule**

 $$I(f) = \sum_{i=1}^{n-1} \int_{x_i}^{x_{i+1}} f(x) dx \approx \sum_{i=1}^{n-1} (x_{i+1} - x_i) f((x_{i+1} + x_i)/2)$$

 - **Composite trapezoid rule**

 $$I(f) = \sum_{i=1}^{n-1} \int_{x_i}^{x_{i+1}} f(x) dx \approx \sum_{i=1}^{n-1} \frac{(x_{i+1} - x_i)}{2} (f(x_{i+1}) + f(x_i))$$

- Composite quadrature can be done with adaptive refinement:

 Introduce new nodes where error estimate is large. Error estimate can be obtained by e.g. comparing trapezoid and midpoint rules, but can be completely wrong if function is insufficiently smooth.
More Complicated Integration Problems

- To handle improper integrals can either transform integral to get rid of infinite limit or use appropriate open quadrature rules.
- Double integrals can simply be computed by successive 1-D integration. *Composite multidimensional rules are also possible by partitioning the domain into chunks.*
- High-dimensional integration is most often done by *Monte Carlo* integration:

\[
\int_{\Omega} f(x) \, dx = E[Y], \quad Y = \frac{|\Omega|}{N} \sum_{i=1}^{N} Y_i, \quad Y_i = f(x_i), \quad x_i \text{ chosen randomly from } \Omega.
\]

*convergence rate is independent of dimension of } x (n) \text{ only on number of samples (N), with error scaling as } O(1/\sqrt{N}).
Integral Equations

- Rather than evaluating an integral, in solving an integral equation we seek to compute the integrand. A typical linear integral equation has the form

$$\int_a^b K(s, t)u(t)dt = f(s), \text{ where } K \text{ and } f \text{ are known.}$$

Using a quadrature rule with weights w_1, \ldots, w_n and nodes t_1, \ldots, t_n obtain

$$\sum_{j=1}^{n} w_jK(s, t_j)u(t_j) = f(s).$$

Discrete sample of f on s_1, \ldots, s_n yields a linear system of equations,

$$\sum_{j=1}^{n} w_jK(s_i, t_j)u(t_j) = f(s_i).$$

- Integral equations are used to
 - recover signal u given response function with kernel K and measurements of f,
 - solve equations arising from Green’s function methods for PDEs.
Integral equations based on response functions tend to be ill-conditioned, which is resolved using

- truncated singular value decomposition of A, where $a_{ij} = w_j K(s_i, t_j)$
- replacing the linear system with a regularized linear least squares problem,
- expressing the solution using a basis

Let $u(t) \approx \sum_{j=1}^{n} c_j \phi_j(t)$ and derive equations for the coefficients.
Numerical Differentiation

- Automatic (symbolic) differentiation is a surprisingly viable option.
 - Any computer program is differentiable, since it is an assembly of basic arithmetic operations.
 - Existing software packages can automatically differentiate whole programs.

- Numerical differentiation can be done by interpolation or finite differencing
 - Given polynomial interpolant, its derivative is easy to obtain.

\[
f'(x) \approx p_{n-1}'(x) = \left[\phi'_1(x) \cdots \phi'_n(x) \right]^T \mathbf{V}(t, \{\phi_i\}_{i=1}^n)^{-1} \mathbf{y}, \text{ where } y_i = f(t_i).
\]

- Finite-differencing formulas effectively use linear interpolant.
Accuracy of Finite Differences

- Forward and backward differences provide first-order accuracy:

 These can be derived using two forms of the Taylor expansion of \(f \) about \(x \),

 \[
 f(x + h) = f(x) + f'(x)h + f''(x)h^2/2 + \ldots
 \]
 \[
 f(x - h) = f(x) - f'(x)h + f''(x)h^2/2 - \ldots
 \]

 For forward differencing, we obtain an approximation from the first equation,

 \[
 f'(x) = \frac{f(x + h) - f(x)}{h} + f''(x)h/2 + \ldots
 \]

- Centered differencing provides second-order accuracy: Using a sum of the two Taylor expansions, or equivalently a difference between the forward- and backward-differencing formulas, we obtain centered differencing,

 \[
 f'(x) = \frac{f(x + h) - f(x - h)}{2h} + O(h^2).
 \]

 Second order accuracy is due to cancellation of odd terms like \(f''(x)h/2 \).
Extrapolation Techniques

- Given a series of approximate solutions produced by an iterative procedure, a more accurate approximation may be obtained by extrapolating this series. For example, as we lower the step size h in a finite-difference formula, we can try to extrapolate the series to $h = 0$, if we know that

$$F(h) = a_0 + a_1 h^p + O(h^r) \text{ as } h \to 0 \text{ and seek to determine } F(0) = a_0,$$

for example in centered differences $p = 2$ and $r = 4$.

- In particular, given two guesses, Richardson extrapolation eliminates the leading order error term: seek to eliminate $a_1 h^p$ term in $F(h)$, $F(h/2)$ to improve approximation of a_0,

$$F(h) = a_0 + a_1 h^p + O(h^r)$$
$$F(h/2) = a_0 + a_1 h^p/2^p + O(h^r)$$

$$a_0 = F(h) - \frac{F(h) - F(h/2)}{1 - 1/2^p} + O(h^r).$$
Given a series of k approximations, Romberg integration applies $(k - 1)$-levels of Richardson extrapolation.

Can apply Richardson extrapolation to each of $k - 1$ pairs of consecutive nodes, then proceed recursively on the $k - 1$ resulting approximations.

Extrapolation can be used within an iterative procedure at each step:

For example, Steffensen’s method for finding roots of nonlinear equations achieves quadratic convergence using Aitken's delta-squared extrapolation process. The method requires no derivative and competes with the Secant method (quadratic versus superlinear convergence, but an extra function evaluation necessary).