sparse linear systems and time-independent PDEs

- The Poisson equation serves as a model problem for numerical methods:

- Dense, sparse direct, iterative, FFT, and Multigrid methods provide increasingly good complexity for the problem:
Multigrid

- Multigrid employs a hierarchy of grids to accelerate iterative methods:

- The multigrid method works by resolving high-frequency error components on finer-grids and low-frequency error components on coarser grids:
Consider the Galerkin approximation with linear finite elements to the Poisson equation $u'' = f(t)$ with boundary conditions $u(a) = u(b) = 0$:

$$
\phi_i^{(h)}(t) = \begin{cases}
(t - t_{i-1})/h & : t \in [t_{i-1}, t_i] \\
(t_{i+1} - t)/h & : t \in [t_i, t_{i+1}] \\
0 & : \text{otherwise}
\end{cases}
$$

where $t_0 = t_1 = a$ and $t_{n+1} = t_n = b$.
Coarse Grid Matrix

- Multigrid restricts the residual equation on the fine grid $A^{(h)}x = r^{(h)}$ to the coarse grid:
Restricting the Residual Equation

- Given the fine-grid residual $r^{(h)}$, we seek to use the coarse grid to approximate $x^{(h)}$ so that $Ax^{(h)} \approx r^{(h)}$
Discrete Fourier Transform

- The solutions to hyperbolic PDEs like Poisson are wave-like and take on simple representations in the frequency basis, both for continuous and discretized equations. We define the *discrete Fourier transform* using

\[\omega(n) = \cos(2\pi/n) - i \sin(2\pi/n) = e^{-2\pi i/n}. \]
Fast Fourier Transform (FFT)

- Consider $b = Fa$, we have

$$\forall j \in [0, n - 1] \quad b_j = \sum_{k=0}^{n-1} \omega_{(n)}^{jk} a_k,$$

the FFT computes this recursively via 2 FFTs of dimension $n/2$, using $\omega(n/2) = \omega_{(n)}^2$.

Fast Fourier Transform Derivation

- The FFT leverages similarity between the first and second half of the output,

\[
b_j = \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k} + \omega_j \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k+1}
\]

\(
\text{corresponds closely to the entry shifted by } n/2,
\)

\[
b_{j+n/2} = \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{(j+n/2)k} a_{2k} + \omega_{(n)}^{j+n/2} \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{(j+n/2)k} a_{2k+1}
\]
FFT Algorithm Summary

- Let vectors u and v be two recursive FFTs, $\forall j \in [0, n/2 - 1]$

$$u_j = \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k}, \quad v_j = \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k+1}$$

- The FFT has $O(n \log n)$ cost complexity:
Applications of the FFT

- We can rapidly multiply degree \(n \) polynomials by considering their values \(\omega^{i}_{(2n-1)} \) for \(i \in \{0, \ldots, 2n - 1\} \)

- More generally the DFT can be used to solve any Toeplitz linear system (convolution):
Convolution via DFT

The Fourier transform method for computing a convolution is given by

\[c_k = \frac{1}{n} \sum_s \omega_{(n)}^{-ks} \left(\sum_j \omega_{(n)}^{sj} a_j \right) \left(\sum_t \omega_{(n)}^{st} b_t \right) \]
Solving Numerical PDEs with the FFT

- 1D finite-difference schemes on a regular grid correspond to convolutions:

- For the 1D Poisson model problem, the eigenvectors of T corresponds to the imaginary part of a minor of a $2(n+1)$-dimensional DFT matrix:

- Multidimensional Poisson can be handled with multidimensional FFT: