# CS 450: Numerical Anlaysis<sup>1</sup> Interpolation

University of Illinois at Urbana-Champaign

<sup>&</sup>lt;sup>1</sup>These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

#### Interpolation

▶ Given  $(t_1, y_1), \dots, (t_m, y_m)$  with nodes  $t_1 < \dots < t_m$  an interpolant f satisfies:

Interpolant is usually constructed as linear combinations of basis functions  $\{\phi_j\}_{j=1}^n = \phi_1, \dots, \phi_n \text{ so } f(t) = \sum_j x_j \phi_j(t).$ 

### **Polynomial Interpolation**

▶ The choice of *monomials* as basis functions,  $\phi_j(t) = t^{j-1}$  yields a degree n-1 polynomial interpolant:

Polynomial interpolants are easy to evaluate and do calculus on:

#### **Conditioning of Interpolation**

► Conditioning of interpolation matrix A depends on basis functions and coordinates  $t_1, \ldots, t_m$ :

▶ The Vandermonde matrix tends to be ill-conditioned:

#### **Lagrange Basis**

▶ n-points fully define the unique (n-1)-degree polynomial interpolant in the Lagrange basis:

► Lagrange polynomials yield an ideal Vandermonde system, but the basis functions are hard to evaluate and do calculus on:

#### **Newton Basis**

▶ The *Newton basis* functions  $\phi_j(t) = \prod_{k=1}^{j-1} (t-t_k)$  with  $\phi_1(t) = 1$  seek the best of monomial and Lagrange bases:

▶ The Newton basis yields a triangular Vandermonde system:

#### **Orthogonal Polynomials**

▶ Recall that good conditioning for interpolation is achieved by constructing a well-conditioned Vandermonde matrix, which is the case when the columns (corresponding to each basis function) are orthonormal. To construct robust basis sets, we introduce a notion of *orthonormal functions*:

#### Legendre Polynomials

▶ The Gram-Schmidt orthogonalization procedure can be used to obtain an orthonormal basis with the same span as any given arbitrary basis:

orthonormal basis with the same span as any given arbitrary basis:

$$(f,g)_{w} = \int_{f} (f) g(f) w(f) df \qquad \text{can choose}$$

$$e_{i} = \int_{f} -\sum_{j=0}^{i} \frac{f_{i,j}}{f_{i,j}} \frac{g_{j,k}}{g_{j,k}} \qquad e_{i} = \underbrace{e_{i,j}}_{f} \underbrace{f_{i,j}}_{g_{i,j}} \frac{g_{j,k}}{g_{i,j}}$$

The Legandra polynomials are obtained by Gram Schmidt on the monomial

▶ The Legendre polynomials are obtained by Gram-Schmidt on the monomial basis, with  $w(t) = \begin{cases} 1: -1 \le t \le 1 \\ 0: \text{ otherwise} \end{cases}$  and normalized so  $\hat{\phi}_i(1) = 1$ .

#### **Chebyshev Basis**

# **Demo:** Chebyshev interpolation **Activity:** Chebyshev Interpolation

▶ Chebyshev polynomials  $\phi_j(t) = \cos((j-1)\arccos(t))$  and Chebyshev nodes  $t_i = \cos\left(\frac{2i-1}{2n}\pi\right)$  provide a way to pick nodes  $t_1,\ldots,t_n$  along with a basis, to yield perfect conditioning:

### **Chebyshev Nodes Intuition**



- Note equi-oscillation property, successive extrema of  $T_k=\phi_k$  have the same magnitude but opposite sign.
- ▶ Set of k Chebyshev nodes of are given by zeros of  $T_k$  and are abscissas of points uniformly spaced on the unit circle.

#### **Error in Interpolation**

We show by induction that given degree n polynomial interpolant  $\tilde{f}$  of f the error  $\tilde{f}(t) = \tilde{f}(t)$  has  $\tilde{f}(t)$  has  $\tilde{f}(t)$  and there exist  $\tilde{f}(t)$  so



#### **Interpolation Error Bounds**

Consequently, polynomial interpolation satisfies the following error bounds

Letting  $h \neq t_n - t_1$  (often also achieve same for h as the node-spacing

 $t_{i+1} - t_i$ ), we obtain

$$|E(+)| = O(h^n)$$
 $C = |E(+)| |E(+)$ 

error is much less with smaller interpolation

## Piecewise Polynomial Interpolation

polation Demo: Composite Gauss Interpolation Error



#### **Spline Interpolation**

 $\triangleright$  A spline is a (k-1)-time differentiable piecewise polynomial of degree k:

gier n points, n + k(n-i) equations, (k+i) n unhours

k equations for continuity/different he lity

gier n points, n + k(n-i) equations, (k+i) n unhours

k equations to choose = 3 (cutsic),

2 equations left,

► The resulting interpolant coefficients are again determined by an and we choose appropriate *generalized Vandermonde system*: f"(1)=f"(1)=0



## **B-Splines**

**B-splines** provide an effective way of constructing splines from a basis:

► The basis functions can be defined recursively with respect to degree.



- everywhere else • All possible splines of degree k with nodes  $\{t_i\}_{i=1}^n$  can be represented in the
- basis.
   The resulting interpolant coefficients are again determined by an appropriate generalized Vandermonde system.

▶ The *i*th degree k polynomial piece is positive on  $[t_i, t_{i+k+1}]$  and zero