CS 450: Numerical Anlaysis’

Interpolation

University of Illinois at Urbana-Champaign

"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Interpolation

» Given (t1,y1),. .., (tm,ym) With nodes t; < --- < t,,, an interpolant f satisfies:

» Interpolant is usually constructed as linear combinations of basis functions

{@j})1 = @1, I SO f(t) = 30, xi05(t).



Activity: Interpolation in Monomial Basis

Polynomial Interpolation

» The choice of monomials as basis functions, ¢,(t) = t/~! yields a degree
n — 1 polynomial interpolant:

» Polynomial interpolants are easy to evaluate and do calculus on:



Demo: Monomial interpolation

Conditioning of Interpolation

» Conditioning of interpolation matrix A depends on basis functions and
coordinates t1,...,tm:

» The Vandermonde matrix tends to be ill-conditioned:



Lagrange Basis

» n-points fully define the unique (n — 1)-degree polynomial interpolant in the
Lagrange basis:

» Lagrange polynomials yield an ideal Vandermonde system, but the basis
functions are hard to evaluate and do calculus on:



Newton Basis

> The Newton basis functions ¢;(t) = [T4_}(t — ti) with ¢ (t) = 1 seek the best
of monomial and Lagrange bases:

» The Newton basis yields a triangular Vandermonde system:



Orthogonal Polynomials

» Recall that good conditioning for interpolation is achieved by constructing a
well-conditioned Vandermonde matrix, which is the case when the columns
(corresponding to each basis function) are orthonormal. To construct robust
basis sets, we introduce a notion of orthonormal functions:



Demo: Orthogonal Polynomials

Legendre Polynomials

» The Gram-Schmidt orthogonalization procedure can be used to obtain an
orthonormal basis with the same span as any given arbitrary basis:
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» The Legendre polynomials are obtained by Gram-Schmidt on the monomial
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Demo: Chebyshev interpolation

Che bys hev Basis Activity: Chebyshev Interpolation

» Chebyshev polynomials ¢;(t) = cos((j — 1) arccos(t)) and Chebyshev nodes

ti :d&s(;m provide a way to pick nodes t1, ..., ¢, along with a basis, to
yield perfect conditioning:




Demo: Jump with Chebyshev Nodes

Chebyshev Nodes Intuition

1, - - —0- + -1
";we rld Nt Ue eﬂo((lm\/\‘/‘
» Note equi-oscillation property, successive extrema of T;, = ¢, have the same
magnitude but opposite sign.

» Set of kK Chebyshev nodes of are given by zeros of T}, and are abscissas of
points uniformly spaced on the unit circle.



Error in Interpolation
We show by induction that given degree n polynomial interpolant f of f the error

E(t) = f(t) — f(t) has nZerosty,...,t, and there exist y1, ..., yn SO
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Demo: Interpolation Error

Interpolation Error Bounds

» Consequently, polynomial mterpolz{mon satlsfles the following erpor"boUrd:
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> Letting'h % t, — t1 (often also achieve same for h as the node-spacing
t;+1 — t;), we obtain 4 amwmdhs
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Demo: Composite Gauss Interpolation Error

Piecewise Polynomial Interpolation

» The kth piece of the interpolant j olynomial in [t;,¢;41]
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Spline Interpolation

» Asplineis a (k — 1)-time differentiable piecewise polynomial of degree k:
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B-Splines
B-splines provide an effective way of constructing splines from a basis:
» The basis functlcig)yag}be defined recursively with respect to degree.
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» The ith degree k polynomial piece is positive on [t;, t;1x+1] and zero
everywhere else

» All possible splines of degree k£ with nodes {¢;}7, can be represented in the
basis.

» The resulting interpolant coefficients are again determined by an
appropriate generalized Vandermonde system.




