CS 450: Numerical Anlaysis’

Numerical Integration and Differentiation

University of Illinois at Urbana-Champaign

"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Integrability and Sensitivity

» Seek to compute Z(f) = fff(:v)dx:

» The condition number of integration is bounded by the distance b — a:



Quadrature Rules
> Approximate the integral Z(f) by a weighted sum of function values:
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» For a fixed set of n nodes, polynomial interpolation foIIowgg by |ntegrat|on
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Determining Weights in a General Basis
» A quadrature rule provide$ « a1d w SO as to approximate
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» Method of undetermined coefficients obtains y from moment equations based

on Vandermonde system:
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Demo: Newton-Cotes weight finder

Newton-Cotes Quadrature

» Newton-Cotes quadrature rules are defined by equispaced nodes on [a, b);
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» The midpoint rule is the n = 1 open Newton-Cotes rule: O =<
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» The trapezoid rule is the n = 2 closed Newton- Cotes rule:
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» Simpson’s rule is the n = 3 closed Newton-Cotes rule:
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Demo: Accuracy of Newton-Cotes

Error in Newton-Cotes Quadrature

» Consider the Taylor expansion of f about the midpoint of the integration
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Error Estimation

» The trapezoid rule is also first degree, despite using higher-degree

polynomial interpolant approm@atlon since \o/“
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» The above derivation allows us to obtain an error approximation via a
difference of midpoint and trapezoidal rules:
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Error in Polynomial Quadrature Rules oy oo i I«»J«rfzi’-\/
=

» We can bound the error for,/an arbitrary polynomial/quadrature rule by
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Conditioning of Newton-Cotes Quadrature .f(x N

» We can ascertain stability of qugdrature rules, by considering the~ ?
amplification of a perturbatlon f=f+0f: (( % ‘? (20
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» Newton-Cotes quadrature rules have at least one negative weight for any
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Clenshaw-Curtis Quadrature

» To obtain a more stable quadrature rule, we need to ensure the integrated
interpolant is well-behaved as n increases:
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. Demo: Gaussian quadrature weight finder
Gaussian Quadrature
» So far, we have only considered quadrature rules based on a fixed set of
nodes, but we may also be able to choose nodes to maximize accuracy:
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» The unique n-point Gaussian quadrature rule is defined by the solution of the
nonlinear form of the moment equations in}erms of both x and w:
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Using Gaussian Quadrature Rules

» Gaussian quadrature rules are hard to compute, but can be enumerated for a
fixed interval, e.g. a = 0,b = 1, so it suffices to transform the integral to [0, 1]
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» Gaussian quadrature rules are accurate and stable but not progressive
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Progressive Gaussian-like Quadrature Rules

» Kronod quadrature rules construct (2n + 1)-poi
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» Patterson quadrature rules use 2n + 2 more points to extend (2n int

Kronod rule to degree 6n + 4, while reusing all 2n + 1 points.
» Gaussian quadrature rules are in general open, but GiLI’SS/R,CﬁQLljmd
Gauss-Lobatto rules permit including end-points:
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Composite and Adaptive Quadrature

» Composite quadrature rules are obtained by integrating a piecewise OA}MM,‘(
interpolant of f: [)
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» Composite quaﬁ?a’lure can be done with adaptive refinement:
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More Complicated Integration Problems

» To handle improper integrals can either transform integral to get rid of
infinite limit or use appropriate open quadrature rules.
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» Double integrals can simply be computed by successive 1-D integration.
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» High- dlmiﬂlonal integration is often effectively done by Monte Carlo:
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Integral Equations

» Rather than evaluating an integral, in solving an integral equation we seek to
compute the integrand. A typical linear integral equation has the form

/ K(s, t = f(s), where K and f areknown.
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» Using a quadrature rule with weights wy, ..., w, and nodes ¢, ...,t, obtain




Demo: Taking Derivatives with Vandermonde Matrices

Numerical Differentiation

» Automatic (symbolic) differentiation is a surprisingly viable option:

» Numerical differentiation can be done by interpolation or finite differencing:

» Given polynomial interpolant, its derivative is easy to obtain by differentiating
the basis in which it is expressed,



Demo: Finite Differences vs Noise

Accura cy of Finite Differences Demo: Floating point vs Finite Differences

» Forward and backward differencing provide first-order accuracy:

» Centered differencing provides second-order accuracy:



Demo: Richardson with Finite Differences

Extrapolation Techniques

» Given a series of approximate solutions produced by an iterative procedure,
a more accurate approximation may be obtained by extrapolating this series.

» In particular, given two guesses, Richardson extrapolation eliminates the
leading order error term:



High-Order Extrapolation

» Given a series of k approximations, Romberg integration applies
(k — 1)-levels of Richardson extrapolation.

» Extrapolation can be used within an iterative procedure at each step:



