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Ordinary Di�erential Equations
� An ordinary di�erential equation (ODE) usually describes time-varying

system by a function y(t) that satisfies a set of equations in its derivatives.

� An ODE of any order k can be transformed into a first-order ODE,



Example: Newton’s Second Law
� F = ma corresponds to a second order ODE,

� We can transform it into a first order ODE in two variables:



Initial Value Problems
� Generally, a first order ODE specifies only the derivative, so the solutions are

non-unique. An initial condition addresses this:

� Given an initial condition, an ODE must satisfy an integral equation for any
given point t:





Existence and Uniqueness of Solutions
� For an ODE to have a unique solution, it must be defined on a closed domain

D and be Lipschitz continuous:

� The solutions of an ODE can be stable, unstable, or asymptotically stable:



Stability of 1D ODEs
� The solution to the scalar ODE y� = λy is y(t) = y0e

λt, with stability
dependent on λ:

� A constant-coe�cient linear ODE has the form y � = Ay, with stability
dependent on the real parts of the eigenvalues of A:



Numerical Solutions to ODEs
� Methods for numerical ODEs seek to approximate y(t) at {tk}mk=1.

� Euler’s method provides the simplest method (attempt) for obtaining a
numerical solution:

Demo: Forward Euler stability



Error in Numerical Methods for ODEs
� Truncation error is typically the main quantity of interest, which can be

defined globally or locally:

� The order of accuracy of a given method is one less than than the order of
the leading order term in lk:



Convergence and Stability
� Generally, we seek to approximate y(tk) for a set of points tk = t0 + kh by ŷk:

� Stability ascertains behavior as t → ∞ either of the ODE itself or of a
numerical method:



Stability of Numerical Methods for ODEs
� Stability can be defined for numerical methods similarly to ODEs themselves.

� Basic stability properties follow from analysis of linear scalar ODE, which
serves as a local approximation to more complex ODEs.

Demo: Stability regions



Implicit Methods
� Implicit methods for ODEs form a sequence of solutions that satisfy

conditions on a local approximation to the solution:

� The backward Euler method for a simple linear scalar ODE stability region is
the left half of the complex plane:

Demo: Backward Euler stability
Demo: Sti�ness



Accuracy and Taylor Series Methods
� By taking a degree-r Taylor expansion of the ODE in t, at each consecutive

(tk, ŷk), we achieve kth order accuracy.

� Taylor series methods require high-order derivatives at each step:



Multi-Stage Methods
� Multi-stage methods construct ŷk+1 by approximating y between tk and tk+1:

� The 4th order Runge-Kutta scheme is particularly popular:



Runge-Kutta Methods

� Runge-Kutta methods evaluate f at tk + cih for c0, . . . , cr ∈ [0, 1],

Demo: Dissipation in Runge-Kutta Methods



Properties of Runge-Kutta and Extrapolation Methods
� Runge-Kutta methods are self-starting, but are harder to use to obtain error

estimates.

� Extrapolation methods achieve high accuracy by successively reducing
step-size.



Multistep Methods
� Multistep methods employ {ŷk}ki=0 to compute ŷk+1:

� Multistep methods are not self-starting, but have practical advantages:


