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CS 450: Numerical Anlaysis’

Initial Value Problems for Ordinary Differential Equations

University of Illinois at Urbana-Champaign
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"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Ordinary Differential Equations

» An ordinary differential equation (ODE) usually describes time-varying
system by a function@) that satisfies a set o(f equations in its derivatives.
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Example: Newton’s Second Law

» F = ma corresponds to a second order ODE,
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Initial Value Problems

» Generally, a first order ODE specifies only the derivative, so the solutions are
non-unique. An initial condition addresses this:
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» Given an initial condition, an ODE \must satisfy an integral equation for any

given point ¢:
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Existence and Uniqueness of Solutions

» For.an ODE to have a unique solution, it must be defined on a closed domain
D and be Lipschitz continuous:
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» The solutions of an ODE can be stable, unstable, or asymptotically stable:
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Stability of 1D ODEs /Ww bl

» The solution to the scalar ODE ¢/ = \y is y(t) = yoe*!, with stability
dependent on \: - 77
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»_A constant-coefficient linear ODE has the form vy’ = Ay,/with stability
dependent on the real parts of the eigenvalues of A:
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Demo: Forward Euler stability

Numerical Solutions to ODEs

» Methods for numerical ODEs seek to approximate y(t) at {tx}}" .
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» Euler’s method provides the simplest method (attempt) for obtaining a
numerical solution:
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Error in Numerical Methods for ODEs

» The order of accuracy of a given method is one less than than the order of
the leading order term in Ij: e
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Convergence and Stability

» Generally, we seek to approximate y(t¢;) for a set of points t;, = to + kh by Jx:

» Stabilityascertains behavior as t — oo either of the ODE itself or of a
numerical method:
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Demo: Stability regions

Stability of Numerical Methods for ODEs

» Stability can be defined for numerical methods similarly to ODEs themselves.
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» Basic stability properties follow from analysis of linear scalar ODE, which
serves as a local approximation to more complex ODEs.
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Demo: Backward Euler stability

ImplICIt Methods Demo: Stiffness

» Implicit methods for ODEs form a sequence of solutions that satisfy
conditions on a local approximation to the solution:

» The backward Euler method for a simple linear scalar ODE stability region is
the left half of the complex plane:



Accuracy and Taylor Series Methods

» By taking a degree-r Taylor expansion of the ODE in ¢, at each consecutive
(tx, Ux), we achieve kth order accuracy.

» Taylor series methods require high-order derivatives at each step:



Multi-Stage Methods

» Multi-stage methods construct g, by approximating y between ¢, and ¢j.1:

» The 4th order Runge-Kutta scheme is particularly popular:



Demo: Dissipation in Runge-Kutta Methods

Runge-Kutta Methods

» Runge-Kutta methods evaluate f at t; + ¢;h for ¢, ..., ¢ € [0,1],



Properties of Runge-Kutta and Extrapolation Methods

» Runge-Kutta methods are self-starting, but are harder to use to obtain error
estimates.

» Extrapolation methods achieve high accuracy by successively reducing
step-size.



Multistep Methods

» Multistep methods employ {g}%_, to compute gy 1:

» Multistep methods are not self-starting, but have practical advantages:



