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Boundary Conditions
� Often we seek to solve a di�erential equation that satisfies conditions on its

values and derivatives on parts of the domain boundary.

� Consider a first order ODE y�(t) = f(t,y) with linear boundary conditions on
domain t ∈ [a, b]:

Bay(a) +Bby(b) = c



Existence of Solutions for Linear ODE BVPs
� The solutions of linear ODE BVP y�(t) = A(t)y(t) + b(t) are linear

combinations of solutions to linear homogeneous ODE IVPs y �(t) = A(t)y(t):

� Solution u(t) (and y(t)) exists if Q = BaY (a) +BbY (b) is invertible:



Green’s Function Form of Solution for Linear ODE BVPs
� For any given b(t) and c, the solution to the BVP can be written in the form:

y(t) = Φ(t)c+

� b

a
G(t, s)b(s)ds

Φ(t) = Y (t)Q−1 is the fundamental matrix and the Green’s function is

G(t, s) = Y (t)Q−1I(s)Y −1(s), I(s) =

�
BaY (a) : s < t

−BbY (b) : s ≥ t



Conditioning of Linear ODE BVPs
� For any given b(t) and c, the solution to the BVP can be written in the form:

y(t) = Φ(t)c+

� b

a
G(t, s)b(s)ds

� The absolute condition number of the BVP is κ = max{||Φ||∞, ||G||∞}:



Shooting Method for ODE BVPs
� For linear ODEs, we construct solutions from IVP solutions in Y (t), which

suggests the shooting method for solving BVPs by reduction to IVPs:

� Multiple shooting employs the shooting method over subdomains:

Demo: Shooting method



Finite Di�erence Methods
� Rather than solve a sequence of IVPs that satisfy the ODEs until they

(approximately) satisfy boundary conditions, we can refine an approximation
that satisfies the boundary conditions, until it satisfies the ODE:

� Convergence to solution is obtained with decreasing step size h so long as
the method is consistent and stable:



Finite Di�erence Methods
� Lets derive the finite di�erence method for the ODE BVP defined by

u�� + 7(1 + t2)u = 0

with boundary conditions u(−1) = 3 and u(1) = −3, using a centered
di�erence approximation for u�� on t1, . . . , tn, ti+1 − ti = h.

Demo: Finite di�erences



Collocation Methods
� Collocation methods approximate y by representing it in a basis

y(t) ≈ v(t,x) =

n�

i=1

xiφi(t).

� Choices of basis functions give di�erent families of methods:

Demo: Sparse matrices



Solving BVPs by Optimization
� To improve robustness, define and minimize a residual error over the whole

domain rather than at collocation points.

� The first-order optimality conditions of the optimization problem are a
system of linear equations Ax = b:



Weighted Residual
� Weighted residual methods work by ensuring the residual is orthogonal with

respect to a given set of weight functions:

� The Galerkin method is a weighted residual method where wi = φi.



Second-Order BVPs: Poisson Equation
In practice, BVPs are at least second order and its advantageous to work in the
natural set of variables.

� Consider the Poisson equation u�� = f(t) with boundary conditions
u(a) = u(b) = 0 and define a localized basis of hat functions:

� Defining residual equation by analogy to the first order case, we obtain,



Weak Form and the Finite Element Method
� The finite-element method permits a lesser degree of di�erentiability of

basis functions by casting the ODE in weak form:





Eigenvalue Problems with ODEs
� A typical second-order scalar ODE BVP eigenvalue problem is

u�� = λf(t, u, u�), with boundary conditions u(a) = 0, u(b) = 0.

These can be solved, e.g. for f(t, u, u�) = g(t)u by finite di�erences:



Using Generalized Matrix Eigenvalue Problems
� Generalized matrix eigenvalue problems arise from more sophisticated ODEs,

u�� = λ(g(t)u+ h(t)u�), with boundary conditions u(a) = 0, u(b) = 0.


