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Boundary Value Problems for Ordinary Differential Equations
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"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Boundary Conditions

» Often we seek to solve a differential equation that satisfies conditions on its
values and derivatives on parts of the domain boundary.

» Consider a first order ODE y'(t) = f(¢,y) with linear boundary conditions on
domain ¢ € [a, b]:
B.y(a) + Byy(b) = c



Existence of Solutions for Linear ODE BVPs

» The solutions of linear ODE BVP y'(t) = A(t)y(t) + b(t) are linear
combinations of solutions to linear homogeneous ODE IVPs y'(t) = A(t)y(t):

» Solution u(t) (and y(¢)) exists if Q@ = B,Y (a) + ByY (b) is invertible:



Green’s Function Form of Solution for Linear ODE BVPs
» For any given b(t¢) and ¢, the solution to the BVP can be written in the form:

b
y(t) = @(t)c+/ G(t,s)b(s)ds
®(t) = Y (t)Q ! is the fundamental matrix and the Green’s function is

B,Y(a) :s<t

G(ts) = Y(t)Q_u(s)Y—l(s), I(s) = {BbY(b) e >t



Conditioning of Linear ODE BVPs

» For any given b(t) and ¢, the solution to the BVP can be written in the form:

b
y(t) = 'I>(t)0+/ G(t,s)b(s)ds

» The absolute condition number of the BVP is k = max{||®||oc, || G||c0 }:



Demo: Shooting method

Shooting Method for ODE BVPs

» For linear ODEs, we construct solutions from IVP solutions in Y (¢), which
suggests the shooting method for solving BVPs by reduction to IVPs:

» Multiple shooting employs the shooting method over subdomains:



Finite Difference Methods

» Rather than solve a sequence of IVPs that satisfy the ODEs until they
(approximately) satisfy boundary conditions, we can refine an approximation
that satisfies the boundary conditions, until it satisfies the ODE:

» Convergence to solution is obtained with decreasing step size h so long as
the method is consistent and stable:



Demo: Finite differences

Finite Difference Methods
» Lets derive the finite difference method for the ODE BVP defined by

W + 71+ tH)u=0

with boundary conditions u(—1) = 3 and u(1) = —3, using a centered
difference approximation for v” on t,...,t,, tjx1 — t; = h.



Demo: Sparse matrices

Collocation Methods

» Collocation methods apprOX|mate Y bﬁ( representing it in a basis
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» Choices of baS|s functloné give dlfferent families of methods:
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Solving BVPs by Optimization

» To improve robustness, define and minimize a residual error over the whole

domain rather than at collocation points.
r(l\,\ = v'(}, VA "“:(«\—-\ §)< ‘C(“"‘\K {(-\'\
o _—
i 3 Lefda o (T '4
X la_~ — _
Dt =)

» The first-order ogﬁmgl_ity_@@s of the optimization problem are a
system of linear Equations Ax = b: ) ()
_of ‘ or A1 "

e T § Lo () —&(*.39‘5

. ‘/\;;9
bR (e a] - fmdnd

AL o



Weighted Residual

» Weighted residual methods work by ensuring the residual is orthogonal with

respect to a given set of weight functions: ;3
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Second-Order BVPs: Poisson Equation
In practice, BVPs are at least second order and its advantageous to work in the
natural set of variables.

» Consider the Poisson equation u” = f(t) with boundary conditions
u(a) = u(b) = 0 and define a l6calized basis of hat functions:
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» Defining residual equation by analogy to the fiﬁ’st order case, we obtain,
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Weak Form and the Finite Element Method

» The finite-element method permits a lesser degree of differentiability of
basis functlons by casting the ODE in Weak form:
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Eigenvalue Problems with ODEs

» A typical second-order scalar ODE BVP eigenvalue problem is

u” = \f(t,u,u'), with boundary conditions u(a) = 0,u(b) = 0.

—
These can be solved, e.g. for f(t,u,u’) = g(t)u by finite differences:
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Using Generalized Matrix Eigenvalue Problems

» Generalized matrix eigenvalue problems arise from more sophisticated ODEs,

t)u+ h(t)u'), with boundary conditions u(a) = 0,u(b) =
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