CS 450: Numerical Anlaysis’

Boundary Value Problems for Ordinary Differential Equations

University of Illinois at Urbana-Champaign

"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Boundary Conditions

» Often we seek to solve a differential equation that satisfies conditions on its
values and derivatives on parts of the domain boundary. \ (m -0
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Existence of Solutions for Linear ODE B}/Ps
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» The solutions of linear ODE BVP y'(t) = A(t)y(t) + b(t) are
combinations of solutions to lineéar homogeneous ODE IVPs|y'(t) = A(t)y(t):
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Green’s Function Form of Solution for Linear ODE BVPs
» For any given b(t¢) and ¢, the solution to the BVP can be written in the form:
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Conditioning of Linear ODE BVPs

» For any given b(t) and ¢, the solution to the BVP can be written in the form:
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» The absolute condition number of the BVP is £ = max{||®||, HGHOO}.

—_— O —



Shooting Method for ODE BVPs Demo: Shooting method

» For linear ODEs, we construct solutions from IVP solutions in Y (¢), which
suggests the shooting method for solvmg BVPs by reduction to IVPs:
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Finite Difference Methods
» Rather than solve a sequence of IVPs that satisfy the ODEs until they

(approximately) satisfy boundary conditions, we can refine an approximation
that satisfies the boundary conditions, until it satisfies the ODE:

MVH/ Ccon fva/(/( w By abo “m J"“"“\"lﬁ

M et ce rr\:}:‘ LTECIE R LT Re. provide
a{)m)«.ml’ sol S k}‘ < 9r na(.l-\f,:,%‘ 2 Cygl,(_‘:c/
Vielen, it T o £y S

> Convergence to solution is obtained with decreasing step size h so long as
the method is consistent and stable:



Demo: Finite differences

Finite Difference Methods

» Lets derive the finite dlfference method for the ODE BVP defmed by I,
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with boundary conditions u(—1) = 3 and u(1) = —3, using a centered +
difference approximation for v” on t,... %, tix1 — t; = h.
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Demo: Sparse matrices

Collocation Methods

» Collocation methods approximate y by representing it in a basis
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» Choices of basis functions give different families of methods:
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Solving BVPs by Optimization

» Can solve collocation equations by minimizing residual (for simplified
scenario f(t,y) = f(t)), g W
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Weighted Residual

» Weighted residual methods work by ensuring the residual is orthogonal with
respect to a given set of weight functipns: " [ p wny} w'// L

§w (4\% wusLl Svhrrs | RXY
[, W(( /Lk""
gw‘(i\ (4 ) dl = o Vi ,wz\ﬁll-ﬁ.ﬂ,fwa
D T
wﬂ\tmki
» The|Galerkin method jis a weighted residual method where w; = ¢;. L‘
K L dE=o ]
)Qi(‘l'\r( X VANE SN

me\; L) M7 o/ %cﬂ\(x\{(k\»

, X‘e“\ ', (Ar\M
;:7 SRR



Second-Order BVPs: Poisson Equation
In practice, BVPs are at least second order and its advantageous to work in the
natural set of variables.

» Consider the Poisson equation u” = f(t) with boundary conditions
u(a) = u(b) = 0 and define a localized basis of hat functions:
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where tg =ty =aand t,1 =t, = 0.



Weak Form and the Finite Element Method

» The finite-element method permits a lesser degree of differentiability of
basis functions by casting the ODE in weak form:



Eigenvalue Problems with ODEs

» A typical second-order scalar ODE BVP eigenvalue problem is
u” = \f(t,u,u'), with boundary conditions u(a) = 0,u(b) = 0.

These can be solved, e.g. for f(t,u,u’) = g(t)u by finite differences:



Using Generalized Matrix Eigenvalue Problems

» Generalized matrix eigenvalue problems arise from more sophisticated ODEs,

" = Mg(t)u+ h(t)u'), with boundary conditions w(a) = 0,u(b) = 0.



