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Partial Di�erential Equations
� Partial di�erential equations (PDEs) describe physical laws and other

continuous phenomena:

� The advection PDE describes basic phenomena in fluid flow,

ut = −a(t, x)ux

where ut = ∂u/∂t and ux = ∂u/∂x.



Types of PDEs
� Some of the most important PDEs are second order:

� The discriminant determines the canonical form of second-order PDEs:

Demo: Time-dependent PDEs



Characteristic Curves
� A characteristic of a PDE is a level curve in the solution:

� More generally, characteristic curves describe curves in the solution field
u(t, x) that correspond to solutions of ODEs, e.g. for ut = −a(t, x)ux with
u(0, x) = u0(x),





Method of Lines
� Semidiscrete methods obtain an approximation to the PDE by solving a

system of ODEs. Consider the heat equation,

ut = cuxx on 0 ≤ x ≤ 1, u(0, x) = f(x), u(t, 0) = u(t, 1) = 0.

� This method of lines often yields a sti� ODE:



Semidiscrete Collocation
� Instead of finite-di�erences, we can express u(t, x) in a spatial basis

φ1(x), . . . ,φn(x) with time-dependent coe�cients α1(t), . . . ,αn(t):

� For the heat equation ut = cuxx, we obtain a linear constant-coe�cient
vector ODE:



Fully Discrete Methods
� Generally, both time and space dimensions are discretized, either by

applying an ODE solver to a semidiscrete method or using finite di�erences.
� Again consider the heat equation ut = cuxx and discretize so u

(k)
i ≈ u(tk, xi),

� This iterative scheme corresponds to a 3-point stencil,



Implicit Fully Discrete Methods
� Using Euler’s method for the heat equation, stability requirement is

� This step-size restriction on stability can be circumvented by use of implicit
time-stepper, such as backward Euler,

� Using the trapezoid method to solve the ODE we obtain the second-order
Crank-Nicolson method,



Convergence and Stability

� Lax Equivalence Theorem: consistency + stability = convergence

� Consistency means that the local truncation error goes to zero, and is easy to
verify by Taylor expansions.

� Stability implies that the approximate solution at any time t must remain
bounded.

� Together these conditions are necessary and su�cient for convergence.

� Stability can be ascertained by spectral or Fourier analysis:

� In the method of lines, we saw that the eigenvalues of the resulting ODE define
the stability region.

� Fourier analysis decomposes the solution into a sum of harmonic functions and
bounds their amplitudes.



CFL Condition
� The domain of dependence of a PDE for a given point (t, x) is the portion of

the problem domain influencing this point through the PDE:

� The Courant, Friedrichs, and Lewy (CFL) condition states that a necessary
condition for an explicit finite-di�erencing scheme to be stable for a
hyperbolic PDE is that the domain of the dependence of the PDE be
contained in the domain of dependence of the scheme:



Time-Independent PDEs
� We now turn our focus to time-independent PDEs as exemplified by the

Helmholtz equation:
uxx + uyy + λu = f(x, y)

� We discretize as before, but no longer perform time stepping:



Finite-Di�erencing for Poisson
� Consider the Poisson equation with equispaced mesh-points on [0, 1]:



Multidimensional Finite Elements
� There are many ways to define localized basis functions, for example in the

2D FEM method2:



Sparse Linear Systems
� Finite-di�erence and finite-element methods for time-independent PDEs give

rise to sparse linear systems:
� typified by the 2D Laplace equation, where for both finite di�erences and FEM,

� Direct methods apply LU or other factorization to A, while iterative methods
refine x by minimizing r = Ax− b, e.g. via Krylov subspace methods.



Direct Methods for Sparse Linear Systems
� It helps to think of A as the adjacency matrix of graph G = (V,E) where

V = {1, . . . n} and aij �= 0 if and only if (i, j) ∈ E:

� Factorizing the lth row/column in Gaussian elimination corresponds to
removing node i, with nonzeros (new edges) introduces for each k, l such
that (i, k) and (i, l) are in the graph.





Vertex Orderings for Direct Methods
� Select the node of minimum degree at each step of factorization:

� Graph partitioning also serves to bound fill, remove vertex separator S ⊂ V
so that V \ S = V1 ∪ · · · ∪ Vk become disconnected, then order V1, . . . , Vk, S:

� Nested dissection ordering partitions graph into halves recursively, ordering
each separator last.

Demo: Sparse Matrix Factorizations and Fill-In



Sparse Iterative Methods

� Sparse iterative methods avoid overhead of fill in sparse direct factorization.
Matrix splitting methods provide the most basic iterative methods:



Sparse Iterative Methods
� The Jacobi method is the simplest iterative solver:

� The Jacobi method converges if A is strictly row-diagonally-dominant:



Gauss-Seidel Method
� The Jacobi method takes weighted sums of x(k) to produce each entry of

x(k+1), while Gauss-Seidel uses the latest available values, i.e. to compute
x
(k+1)
i it uses a weighted sum of

x
(k+1)
1 , . . . x

(k+1)
i−1 , x

(k)
i , . . . , x(k)n .

� Gauss-Seidel provides somewhat better convergence than Jacobi:



Successive Over-Relaxation
� The successive over-relaxation (SOR) method seeks to improve the spectral

radius achieved by Gauss-Seidel, by choosing

M =
1

ω
D +L, N =

� 1

ω
− 1

�
D −U

� The parameter ω in SOR controls the ‘step-size’ of the iterative method:

Demo: Stationary Iterative Methods



Conjugate Gradient
� The solution to Ax = b is a minima of the quadratic optimization problem,

min
x

||Ax− b||22

� Conjugate gradient works by picking A-orthogonal descent directions

� The convergence rate of CG is linear with coe�cient
√

κ(A)−1√
κ(A)+1

:

Demo: Jacobi vs Conjugate Gradient



Preconditioning
� Preconditioning techniques choose matrix M ≈ A that is easy to invert and

solve a modified linear system with an equivalent solution to Ax = b,

M−1Ax = M−1b

� M is chosen to be an e�ective approximation to A with a simple structure:


