CS 450: Numerical Anlaysis¹ Partial Differential Equations

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Partial Differential Equations

Partial differential equations (PDEs) describe physical laws and other continuous phenomena:

► The advection PDE describes basic phenomena in fluid flow,

$$u_t = -a(t, x)u_x$$

where $u_t = \partial u/\partial t$ and $u_x = \partial u/\partial x$.

Types of PDEs

▶ Some of the most important PDEs are *second order*:

► The *discriminant* determines the canonical form of second-order PDEs:

Characteristic Curves

▶ A *characteristic* of a PDE is a level curve in the solution:

More generally, characteristic curves describe curves in the solution field u(t,x) that correspond to solutions of ODEs, e.g. for $u_t=-a(t,x)u_x$ with $u(0,x)=u_0(x)$,

Method of Lines

► Semidiscrete methods obtain an approximation to the PDE by solving a system of ODEs. Consider the heat equation,

$$u_t = cu_{xx} \text{ on } 0 \le x \le 1, \quad u(0,x) = f(x), u(t,0) = u(t,1) = 0.$$

$$u_{xx}(+,x) \approx u(+,x_{1-1}) - 2u(+,x_1) + u(+,x_{1-1})$$

$$y_1(+) = y_1(+) = y_1(+)$$

may need small At - time discretization

Semidiscrete Collocation

▶ Instead of finite-differences, we can express u(t,x) in a spatial basis $\phi_1(x), \ldots, \phi_n(x)$ with time-dependent coefficients $\alpha_1(t), \ldots, \alpha_n(t)$:

u(1,x)
$$\approx v_{e,x}(1,x) = \sum_{i=1}^{n} x_i(1)e_i(x)$$

cellocation method system of ODEs

For the heat equation
$$u_t = A_{uxx}$$
, we obtain a linear constant-coefficient vector ODE:

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x^2} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x^2} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x^2} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x^2} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x^2} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x^2} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x^2} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x^2} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x^2} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x^2} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x^2} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

$$\frac{\partial V}{\partial x} (1, x) = \frac{\partial V}{\partial x} (1, x)$$

Fully Discrete Methods

 Generally, both time and space dimensions are discretized, either by applying an ODE solver to a semidiscrete method or using finite differences.

Implicit Fully Discrete Methods

▶ Using Euler's method for the heat equation, stability requirement is

X+ Ec(DX) This step-size restriction on stability can be circumvented by use of implicit

time-stepper, such as backward Euler,

$$\frac{u(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k) + u(k)}{\Delta x^2}$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k) + u(k)}{\Delta x^2}$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

$$\frac{d(k) - (k-1)}{\Delta t} = \frac{u(k) - 2t(k)}{\Delta t} + u(k)$$

 Using the trapezoid method to solve the ODE we obtain the second-order Crank-Nicolson method.

Convergence and Stability

- ► Lax Equivalence Theorem: consistency + stability = convergence
 - Consistency means that the local truncation error goes to zero, and is easy to verify by Taylor expansions.
 - Stability implies that the approximate solution at any time t must remain bounded.
 - Together these conditions are necessary and sufficient for convergence.
- Stability can be ascertained by spectral or Fourier analysis:
 - ▶ In the method of lines, we saw that the eigenvalues of the resulting ODE define the stability region.
 - Fourier analysis decomposes the solution into a sum of harmonic functions and bounds their amplitudes.

CFL Condition

The domain of dependence of a PDE for a given point (t,x) is the portion of the problem domain influencing this point through the PDE:

► The Courant, Friedrichs, and Lewy (CFL) condition states that a necessary condition for an explicit finite-differencing scheme to be stable for a hyperbolic PDE is that the domain of the dependence of the PDE be contained in the domain of dependence of the scheme:

Time-Independent PDEs

► We now turn our focus to time-independent PDEs as exemplified by the Helmholtz equation:

$$u_{xx} + u_{yy} + \lambda u = f(x, y)$$

$$\lambda = 0 \implies \text{Poisson}$$
also $f(x, y) = 0 \implies \text{Laplace}$

$$u_{xx} + u_{yy} + \lambda u = f(x, y)$$

▶ We discretize as before, but no longer perform time stepping:

Finite-Differencing for Poisson

Multidimensional Finite Elements

► There are many ways to define localized basis functions, for example in the 2D FEM method²:

Sparse Linear Systems

- ► Finite-difference and finite-element methods for time-independent PDEs give rise to sparse linear systems:
 - typified by the 2D Laplace equation, where for both finite differences and FEM,

▶ Direct methods apply LU or other factorization to A, while iterative methods refine x by minimizing r=Ax-b, e.g. via Krylov subspace methods.

Lexact solution, reliable, but expensive

Direct Methods for Sparse Linear Systems

▶ It helps to think of A as the adjacency matrix of graph G = (V, E) where $V = \{1, \dots, n\}$ and $G = \{0, \dots, n\}$ are $\{0, \dots, n\}$ and $\{0, \dots, n\}$ and $\{0, \dots, n\}$ are $\{0, \dots, n\}$ and $\{0, \dots, n\}$ and $\{0, \dots, n\}$ are $\{0, \dots, n\}$ and $\{0, \dots, n$

Factorizing the lth row/column in Gaussian elimination corresponds to removing node i, with nonzeros (new edges) introduces for each k, l such that (i, k) and (i, l) are in the graph.

Vertex Orderings for Direct Methods

Select the node of minimum degree at each step of factorization:

ightharpoonup Graph partitioning also serves to bound fill, remove vertex separator $S \subset V$ so that $V \setminus S = V_1 \cup \cdots \cup V_k$ become disconnected, then order V_1, \ldots, V_k, S :

Nested dissection ordering partitions graph into halves recursively, ordering each separator last.

Sparse Iterative Methods

➤ Sparse iterative methods avoid overhead of fill in sparse direct factorization. *Matrix splitting* methods provide the most basic iterative methods:

$$\frac{M_{x_{k+1}} = N_{x_k} + b}{A = M + N}$$

$$\frac{A = M + N}{A = M + N}$$

$$\frac{g(x) = x^{n}}{A = x^{n}}$$

$$\frac{g(x) = x^{n}}{A = b}$$

Sparse Iterative Methods

► The Jacobi method is the simplest iterative solver:

lacktriangle The Jacobi method converges if $oldsymbol{A}$ is strictly row-diagonally-dominant:

Gauss-Seidel Method

▶ The Jacobi method takes weighted sums of $\boldsymbol{x}^{(k)}$ to produce each entry of $\boldsymbol{x}^{(k+1)}$, while Gauss-Seidel uses the latest available values, i.e. to compute $x_i^{(k+1)}$ it uses a weighted sum of

$$x_1^{(k+1)}, \dots, x_{i-1}^{(k+1)}, x_i^{(k)}, \dots, x_n^{(k)}.$$

► Gauss-Seidel provides somewhat better convergence than Jacobi:

MIN has smaller legal eignal

Successive Over-Relaxation

► The *successive over-relaxation* (SOR) method seeks to improve the spectral radius achieved by Gauss-Seidel, by choosing

$$M = \frac{1}{\omega}D + L$$
, $N = (\frac{1}{\omega} - 1)D - U$

lacktriangle The parameter ω in SOR controls the 'step-size' of the iterative method:

Conjugate Gradient

ightharpoonup The solution to Ax = b is a minima of the quadratic optimization problem,

min 2 xTAx - xtb

X

Critical point

orhabita

orhabita

Axab $\min_{m{x}} ||m{A}m{x} - m{b}||_2^2$ need A symmetrice & spenishe defined

converges in a steps

 \triangleright Conjugate gradient works by picking A-orthogonal descent directions

► The convergence rate of CG is linear with coefficient $\frac{\sqrt{\kappa(A)-1}}{\sqrt{\kappa(A)}}$: in general, sperste iterative methods are first for well-conditioned A

Preconditioning

lacktriangledown Preconditioning techniques choose matrix Mpprox A that is easy to invert and solve a modified linear system with an equivalent solution to Ax=b,

$$M^{-1}Ax = M^{-1}b$$

$$K(M^{-1}A) \leq K(A)$$

lacktriangleright M is chosen to be an effective approximation to A with a simple structure: