CS 450: Numerical Anlaysis’

Partial Differential Equations

University of Illinois at Urbana-Champaign

"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Partial Differential Equations

» Partial differential equations (PDEs) describe physical laws and other
continuous phenomena:

» The advection PDE describes basic phenomena in fluid flow,
up = —a(t, x)uy

where u; = du/0t and u, = Ou/0x.



Demo: Time-dependent PDEs

Types of PDEs

» Some of the most important PDEs are second order:

» The discriminant determines the canonical form of second-order PDEs:



Characteristic Curves

» A characteristic of a PDE is a level curve in the solution:

» More generally, characteristic curves describe curves in the solution field
u(t, ) that correspond to solutions of ODEs, e.g. for u; = —a(t, z)u, with
u(0, z) = up(),
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Method of Lines

» Semidiscrete methods obtain an approximation to the PDE by solving a

system of ODEs. Consider the heat equation, N = X pm X
S e w=cugon0<z<1, u0z)= f() u(t,0) = u(t, 1) = 0.
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» This method of lines often yields a stlff ODE:
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Semidiscrete Collocation

» Instead of finite-differences, we can express u(¢, x) in a spatial basis

o1(x), ... x) with time-dependent coefficients a;(t), ..., ay(t):
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» For the heat equatlon n _@m we obtain a linear constant-coefficient
vector ODE:
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Fully Discrete Methods

» Generally, both time and space dimensions are discretized, either by
applying an ODE solver to a semidiscrete method or using finite differences.

» Again consider the heat equatlon Uy = C"fi and discretize so u( ) ~ u(ty, ;),
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Implicit Fa!ly Di§crete Methods
G
> Using Euler’s method for the heat equation, stability requirement is
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» This step-size restriction on stability can be cwcumvented by use ofA p|ICI
time-stepper, such as backward Euler,
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» Using the trapezoid m d to solve the ODE we obtain the second oF‘E‘Yer&:_Z"

Crank-Nicolson method,




Convergence and Stability

» Lax Equivalence Theorem: consistency + stability = convergence

» Consistency means that the local truncation error goes to zero, and is easy to
verify by Taylor expansions.

» Stability implies that the approximate solution at any time t must remain
bounded.

» Together these conditions are necessary and sufficient for convergence.

» Stability can be ascertained by spectral or Fourier analysis:

» In the method of lines, we saw that the eigenvalues of the resulting ODE define
the stability region.

» Fourier analysis decomposes the solution into a sum of harmonic functions and
bounds their amplitudes.



CFL Condition

» The domain of dependence of a PDE for a given point (¢, x) is the portion of
the roblem domamWncmg this point through the PDE:
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» The Courant, Friedrichs, and Lewy (CFL) condition states that a necessary
condition for an explicit finite-differencing scheme to be stable for a
hyperbolic PDE is that the domain of the dependence of the PDE be
tontained in the dogn(ain of dependence of the scheme:




Time-Independent PDEs

» We now turn our focus to time-independent PDEs as exemplified by the
Helmholtz equation:
Uzz + Uyy + A= f(2,y)
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» We discretize as before, but no longer perform time stepping:
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Finite-Differencing for Poisson

> Tnsider the Poisson eq I with equispaced mesh-points on [0, 1]:
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Multidimensional Finite Elements

» There are many ways to define localized basis functions, for example in the
2D FEM method?:

v Basis function overlap 3

Triangular elements



Sparse Linear Systems

» Finite-difference and finite-element methods for time-independent PDEs give
rise to sparse linear systems:

» typified by the 2D Laplace equation, where for both finite differences and FEM,
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» Direct methods apply LUgr other factorization to A, while iterative methods
refine by minimizi = Ax — b, e.g. via Krylov subspace methods.
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Direct Methods for Sparse Linear Systems

» It helps to think of A as the adjacency matrix of graph G = (V, E)) where
V=A{1,. n} and “ai; # 0ifand only if (z,5) € (
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» Factorizing the ith row/column in Gaussian elimination corresponds to
removing node 7, with nonzeros (new edges) introduces for each k&, such

that (i, k) and (i,1) are in the graph. —
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Demo: Sparse Matrix Factorizations and Fill-In

Vertex Orderings for Direct Methods

» Select the node of minimum at each step of factorization:
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» Graph partitioning also serves to bound fill, remove vertex separator S C V
sothatV\S=V,U---UV; become disc ected, then order V1,..., V., S:

» Nested dissectiophorderin% partiti%nr? %raph into halves recursively, ordering
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Sparse Iterative Methods

» Sparse iterative methods avoid overhead of fill in sparse direct factorization.
Matrix splitting methods provide the most basic iterative methods:
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Sparse Iterative Methods

» The Jacobi method is the simplest iterative solver:
A=Da L+U M= D k' - ch
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» The Jacobi method converges if A |s strictly row-diagonally-dominant:
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Gauss-Seidel Method

» The Jacobi method takes weighted sums of (¥) to produce each entry of
z(*+1) while Gauss-Seidel uses the latest available values, i.e. to compute
xﬁ’”l) it uses a weighted sum of
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» Gauss- Sele? provides somewhat better convergence than Jacobi:
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Demo: Stationary Iterative Methods

Successive Over-Relaxation

» The successive over-relaxation (SOR) method seeks to improve the spectral
radius achieved by Gauss-Seidel, by choosing
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» The parameter w in SOR controls the ‘step-size’ of the iterative method:
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Demo: Jacobi vs Conjugate Gradient

Conjugate Gradient
» The solution to Az = b is a minima of the quadratic optimization problem,
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» Conjugate gradient works by picking A-orthogonal descent directions
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» The convergence rate of CG is linear with coefficient ¥ ”(A)_l;
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Preconditioning

» Preconditioning techniques choose matrix M ~ A that is easy to invert and
solve a modified linear system with an equivalent solution to Az = b,

M 'Az=M"'b
b~

ke (M7AN < elAN

! m\ |
» M is chosen to be an effective approximation to A with a simple structure:
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