CS 450: Numerical Anlaysis’

Partial Differential Equations

University of Illinois at Urbana-Champaign

"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).



Partial Differential Equations

» Partial differential equations (PDEs) describe physical laws and other
continuous phenomena:
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» The advection PDE describes basic phenomena in fluid flow,
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where u; = 0u/0t and u, = du/0x.
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Types of PDEs

» Some of the most important PDEs are second order:
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> Th@ermines the canonical form of second-order PDEs:
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Characteristic Curves
» A characteristic of a PDE is a level edrve in the solution: \[
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» More generally, characteristic curves describe curves in the solution field
u(t, ) that correspond to solutions of ODEs, e.g. for u; = —a(t, z)u, with
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Method of Lines

» Semidiscrete methods obtain an approximation to the PDE by solving a
system of ODEs, e.g. consider the heat equation,

up=cugz,on0<z<1, w0,z)=f(z),ut0)=mu(t1)=0.

» This method of lines often yields a stiff ODE:



Semidiscrete Collocation

» Instead of finite-differences, we can express u(¢, z) in a spatial basis:

» For the heat equation u; = cu,,, we obtain a linear constant-coefficient
vector ODE:



Fully Discrete Methods

» Generally, both time and space dimensions are discretized, for example
using finite differences:



Implicit Fully Discrete Methods

» Using Euler’s method for the heat equation, stability requirement is

At = O((Aa:)2>



Convergence and Stability

» Lax Equivalence Theorem: consistency + stability = convergence

» Stability can be ascertained by spectral or Fourier analysis:



CFL Condition

» The domain of dependence of a PDE for a given point (¢, x) is the portion of
the problem domain influencing this point through the PDE:

» The Courant, Friedrichs, and Lewy (CFL) condition states that a necessary
condition for an explicit finite-differencing scheme to be stable for a
hyperbolic PDE is that the domain of the dependence of the PDE be
contained in the domain of dependence of the scheme:



Time-Independent PDEs

» We now turn our focus to time-independent PDEs as exemplified by the
Helmholtz equation:
Ugy + Uyy + Au = f(az,y)

» We discretize as before, but no longer perform time stepping:



Finite-Differencing for Poisson

» Consider the Poisson equation with equispaced mesh-points on [0, 1]:



Multidimensional Finite Elements

» There are many ways to define localized basis functions, for example in the
2D FEM method?:
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Sparse Linear Systems

» Finite-difference and finite-element methods for time-independent PDEs give
rise to sparse linear systems:

» Direct methods apply LU or other factorization to A, while iterative methods
refine & by minimizing »r = Ax — b, e.g. via Krylov subspace methods.



Direct Methods for Sparse Linear Systems

» It helps to think of A as the adjacency matrix of graph G = (V, E)) where
V ={1,...n}anda;; #0ifand only if (4, j) € E:

» Factorizing the ith row/column in Gaussian elimination corresponds to
removing node ¢, with nonzeros (new edges) introduces for each k&, such
that (i, k) and (i,[) are in the graph.



Vertex Orderings for Sparse Direct Methods
» Select the node of minimum degree at each step of factorization:

» Graph partitioning also serves to bound fill, remove vertex separator S C V'

sothat V'\ S=V,U---UV, become disconnected, then order V1,...,V;, S:

» Nested dissection ordering partitions graph into halves recursively, ordering
each separator last.



Sparse Iterative Methods

» Direct sparse factorization is ineffective in memory usage and/or cost for
many typical sparsity matrices, motivating iterative methods:



Sparse Iterative Methods

» The Jacobi method is the simplest iterative solver:

» The Jacobi method converges if A is strictly row-diagonally-dominant:



Gauss-Seidel Method

» The Jacobi method takes weighted sums of (¥) to produce each entry of
z(*+1) while Gauss-Seidel uses the latest available values, i.e. to compute
xEkH) it uses a weighted sum of

x§k+1), .. .xiﬁ—{l),xgk), e ,;U,(Ik).

» Gauss-Seidel provides somewhat better convergence than Jacobi:



Successive Over-Relaxation
» The successive over-relaxation (SOR) method seeks to improve the spectral
radius achieved by Gauss-Seidel, by choosing
1 1
M=-D+L, N-= (——1>D—U
w
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» The parameter w in SOR controls the ‘step-size’ of the iterative method:



Conjugate Gradient

» The solution to Az = b is a minima of the quadratic optimization problem,

min || Az — b||3
xT

» Conjugate gradient works by picking A-orthogonal descent directions

» The convergence rate of CG is linear with coefficient ﬁ; where
k= cond(A):



Preconditioning

» Preconditioning techniques choose matrix M ~ A and solve the linear
system
M ‘tAz=M"'b

» M is a usually chosen to be an effective approximation to A with a simple
structure:



