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Numerical Optimization
I Our focus will be on continuous rather than combinatorial optimization:

min
x
f(x) subject to g(x) = 0 and h(x) ≤ 0

where f ∈ Rn → R is assumed to be di�erentiable.
I Without the constraints, i.e. with g = 0 and h = 0, the problem is

unconstrained.
I With constraints, the constrained optimization problem restricts the solution to

elements of the feasible region: {x : g(x) = 0 and h(x) ≤ 0}.

I We consider linear, quadratic, and general nonlinear optimization problems:
I If f , g, and h are a�ne (linear and constant terms only) then we have linear

programming problem.
I If f is quadratic while g and h are linear, then we have a quadratic

programming problem, for which specialized methods exist.
I Generally, we have a nonlinear programming problem.



Local Minima and Convexity
I Without knowledge of the analytical form of the function, numerical

optimization methods at best achieve convergence to a local rather than
global minimum:
If the input domain is infinite or the global minimum is in an infinitesimally
narrow trough, it may be impossible to find the global minimum in finite time.

I A set is convex if it includes all points on any line, while a function is
(strictly) convex if its (unique) local minimum is always a global minimum:

I Set S is convex if

∀x,y ∈ S, α ∈ [0, 1], αx+ (1− α)y ∈ S.

I Function f is convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

I A function may have a unique global minima but not be convex.



Existence of Local Minima

I Level sets are all points for which f has a given value, sublevel sets are all
points for which the value of f is less than a given value:

L(z) = {x : f(x) = z}

S(z) = {x : f(x) ≤ z}

I If there exists a closed and bounded sublevel set in the domain of feasible
points, then f has has a global minimum in that set:
Need a value z such that S(z) has finite size, is contiguous, and includes its
own boundary.



Optimality Conditions

I If x is an interior point in the feasible domain and is a local minima,

∇f(x) =
[
df
dx1

(x) · · · dfdxn (x)
]T

= 0 :

I If df
dxi

(x) < 0 an infinitesimal increment to xi improves the solution,
I if df

dxi
(x) > 0 an infinitesimal decrement to xi improves the solution.

I Critical points x satisfy ∇f(x) = 0 and can be minima, maxima, or saddle
points:
For scalar function f , can distinguish the three by considering sign of f ′′(x).



Hessian Matrix
I To ascertain whether a critical point x, for which ∇f(x) = 0, is a local

minima, consider the Hessian matrix:

Hf (x) = J∇f (x) =


d2f
dx21

(x) · · · d2f
dx1dxn

(x)

... . . . ...
d2f

dxndx1
(x) · · · d2f

dx2n
(x)


The Hessian matrix is always symmetric.

I If x∗ is a minima of f , then Hf (x
∗) is positive semi-definite:

If Hf (x
∗) is not positive semi-definite, there exists normalized vector s such

that sTHf (x
∗)s < 0, which means that for a su�ciently small α, x̂ = x∗ + αs

will have be a better solution, f(x̂) < f(x∗), since the gradient is zero at x∗
and decreases for an infinitesimal perturbation of x∗ in the direction s.



Optimality on Feasible Region Border
I Given an equality constraint g(x) = 0, it is no longer necessarily the case

that ∇f(x∗) = 0. Instead, it may be that directions in which the gradient
decreases lead to points outside the feasible region:

∃λ ∈ Rn, −∇f(x∗) = JTg (x∗)λ

I λ are referred to as the Lagrange multipliers.
I This condition implies that at x∗, the direction in which f decreases is in the

span of directions moving along which would exit the feasible region.

I Such constrained minima are critical points of the Lagrangian function
L(x,λ) = f(x) + λTg(x), so they satisfy:

∇L(x∗,λ) =
[
∇f(x∗) + JTg (x∗)λ

g(x∗)

]
= 0

Seeking λ∗ to obtain a function k(x) = L(x,λ∗) with maximum global
minimum is the dual optimization problem.



Sensitivity and Conditioning
I The condition number of solving a nonlinear equations is 1/f ′(x∗), however

for a minimizer x∗, we have f ′(x∗) = 0, so conditioning of optimization is
inherently bad:
Consider perturbation of function values for a function that changes slowly
near the minimum.

I To analyze worst case error, consider how far we have to move from a root x∗
to perturb the function value by ε:

ε = f(x∗ + h)− f(x∗) = f ′(x∗)h︸ ︷︷ ︸
0

+
1

2
f ′′(x∗)h2 +O(h3)

I so the function value changes by 1
2f
′′(x∗)h2, which implies we need h = O(

√
ε),

I a perturbation to the function value in the kth significant digit, could result in
the solution changing in the k/2th significant digit.



Golden Section Search
I Given bracket [a, b] with a unique minimum (f is unimodal on the interval),

golden section search considers consider points f(x1), f(x2),
a < x1 < x2 < b and discards subinterval [a, x1] or [x2, b]:

I If a function is strictly convex and bounded on [a, b], it is unimodal on that
interval, but a unimodal function may be non-convex.

I Because the function is unimodal, if we have f(x1) < f(x2) then the unique local
minima f in [a, b] has to be in the interval [a, x2].

I So, if f(x1) < f(x2) can restrict search to [a, x2] and otherwise to [x1, b].
I Since one point remains in the interval, golden section search selects x1 and
x2 so one of them can be e�ectively reused in the next iteration:

I For example, when f(x1) > f(x2), x2 is inside [x1, b] and we would like x2 to
serve as the x1 for the next iteration.

I To ensure this, and minimize resulting interval length, we pick
x2 = a+ (b− a)(

√
5− 1)/2 and x1 = b− (b− a)(

√
5− 1)/2.

I Consequently, the convergence of golden secetion search is linear with constant
(
√
5− 1)/2 per function evaluation.

Demo: Golden Section Proportions

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/06-optimization/Golden Section Proportions.html


Newton’s Method for Optimization

I At each iteration, approximate function by quadratic and find minimum of
quadratic function:
Pick quadratic function f̂ as first three terms of Taylor expansion of f about
xk, matching value and first two derivatives of f at xk.

I The new approximate guess will be given by xk+1 − xk = −f ′(xk)/f ′′(xk):

f(x) ≈ f̂(x) = f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)2

since the function is quadratic, we can find its unique critical point to find its
minima,

f̂ ′(xk+1) = f ′(xk) + f ′′(xk)(xk+1 − xk) = 0.

Demo: Newton’s Method in 1D

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/06-optimization/Newton's Method in 1D.html


Successive Parabolic Interpolation

I Interpolate f with a quadratic function at each step and find its minima:
Given three points, there is a unique quadratic function interpolating them.

I The convergence rate of the resulting method is roughly 1.324

By comparison, the convergence of golden section search is linear with a
constant of 0.618, while Newton’s method converges quadratically.



Safeguarded 1D Optimization

I Safeguarding can be done by bracketing via golden section search:
Combination of Newton and golden section search

I achieves quadratic convergence locally,
I is guaranteed convergence provided unimodality of function.

I Backtracking and step-size control:

I Can take smaller step xk+1 = xk − αkf ′(xk)/f ′′(xk) for some αk < 1.
I Can backtrack and choose smaller αk if f(xk+1) > f(xk).



General Multidimensional Optimization

I Direct search methods by simplex (Nelder-Mead):
Form a n-point polytope in n-dimensional space and adjust worst point
(highest function value) by moving it along a line passing through the
centroid of the remaining points.

I Steepest descent: find the minimizer in the direction of the negative gradient:

xk+1 = xk − αk∇f(xk)

such that f(xk+1) = minαk
f(xk − αk∇f(xk)), i.e. perform a line search

(solve 1D optimization problem) in the direction of the negative gradient.

Demo: Nelder-Mead Method

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/06-optimization/Nelder-Mead Method.html


Convergence of Steepest Descent
I Steepest descent converges linearly with a constant that can be arbitrarily

close to 1:
I Convergence is slow locally, in the worst case, and generally depends on the

Hessian near the minima.
I If the gradient is changing quickly, it serves as good approximation only within a

small local neighborhood, so the line search may result in arbitrarily small steps.
I Given quadratic optimization problem f(x) = 1

2x
TAx+ cTx where A is

symmetric positive definite, the error ek = xk − x∗ satisfies

||ek+1||A = eTk+1Aek+1 =
σmax(A)− σmin(A)

σmax(A) + σmin(A)
||ek||A

I When su�ciently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.

I Convergence rate depends on the conditioning of A, since
σmax(A)− σmin(A)

σmax(A) + σmin(A)
=
κ(A)− 1

κ(A) + 1
.

Demo: Steepest Descent

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/06-optimization/Steepest Descent.html


Gradient Methods with Extrapolation

I We can improve the constant in the linear rate of convergence of steepest
descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction xk − xk−1):

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1)

I The heavy ball method, which uses constant αk = α and βk = β, achieves
better convergence than steepest descent:

||ek+1||A =

√
κ(A)− 1√
κ(A) + 1

||ek||A

Nesterov’s gradient optimization method is another instance of an
extrapolation method that provides further improved optimality guarantees.



Conjugate Gradient Method

I The conjugate gradient method is capable of making the optimal choice of αk
and βk at each iteration of an extrapolation method:

(αk, βk) = argmin
αk,βk

[
f
(
xk − αk∇f(xk) + βk(xk − xk−1)

)]
I For SPD quadratic programming problems, conjugate gradient is an optimal 1st

order method, converging in n iterations.
I It implicitly computes Lanczos iteration, searching along A-orthogonal

directions at each step.

I Parallel tangents implementation of the method proceeds as follows

1. Perform a step of steepest descent to generate x̂k from xk.
2. Generate xk+1 by minimizing over the line passing through xk−1 and x̂k.

Demo: Conjugate Gradient Method

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/06-optimization/Conjugate Gradient Method.html


Krylov Optimization
I Conjugate Gradient finds the minimizer of f(x) = 1

2x
TAx+ cTx within the

Krylov subspace of A:

I It constructs Krylov subspace Kk(A, c) = span(c,Ac, . . . ,Ar−1c).
I At the kth step conjugate gradient yields iterate

xk = −||c||2QkT
−1
k e1,

where Qk are the Lanczos vectors associated with Kk(A, c) and Tk = QT
kAQk.

I This choice of xk minimizes f(x) since

min
x∈Kk(A,c)

f(x) = min
y∈Rk

f(Qky)

= min
y∈Rk

yTQkAQky + cTQky

= min
y∈Rk

yTTky + ||c||2eT1 y

is minimized by y = −||c||2T−1k e1.

Demo: Conjugate Gradient Parallel Tangents as Krylov Subspace Method

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/06-optimization/Conjugate Gradient Parallel Tangents as Krylov Subspace Method.html


Newton’s Method
I Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation:

f(xk + s) ≈ f̂(s) = f(xk) + s
T∇f(xk) +

1

2
sTHf (xk)s.

The minima of this function can be determined by identifying critical points

0 = ∇f̂(s) = ∇f(xk) +Hf (xk)s,

thus to determine s we solve the linear system,

Hf (xk)s = −∇f(xk).
Assuming invertibility of the Hessian, we can write the Newton’s method
iteration as

xk+1 = xk −Hf (xk)
−1∇f(xk)︸ ︷︷ ︸
s

.

Quadratic convergence follows by equivalence to Newton’s method for solving
nonlinear system of optimality equations ∇f(x) = 0.

Demo: Newton’s Method in n dimensions

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/06-optimization/Newton's Method in n dimensions.html


Quasi-Newton Methods
I Quasi-Newton methods compute approximations to the Hessian at each step:

xk+1 = xk − αkB−1k ∇f(xk)
where αk is a line search parameter. Quasi-Newton methods can be more
robust than Newton’s method, as the Newton’s method step can lead to a
direction in which the objective function is strictly increasing.

I The BFGS method is a secant update method, similar to Broyden’s method:
I At each iteration, perform a rank-2 update to Bk using sk = xk+1 − xk and
yk = ∇f(xk+1)−∇f(xk):

Bk+1 = Bk +
yky

T
k

yTk sk
− Bksks

T
kBk

sTkBksk

I Can update inverse with O(n2) work, but its more stable and e�cient to update
a symmetric indefinite factorization.

I The BFGS method also preserves symmetry of the Hessian approximation.



Nonlinear Least Squares
I An important special case of multidimensional optimization is nonlinear least

squares, the problem of fitting a nonlinear function fx(t) so that fx(ti) ≈ yi:
For example, consider fitting f[x1,x2](t) = x1 sin(x2t) so thatf[x1,x2](1.5)f[x1,x2](1.9)

f[x1,x2](3.2)

 ≈
−1.24.5

7.3

 .
I We can cast nonlinear least squares as an optimization problem and solve it

by Newton’s method:
Define residual vector function r(x) so that ri(x) = yi − fx(ti) and minimize

φ(x) =
1

2
||r(x)||22 =

1

2
r(x)Tr(x).

Now the gradient is ∇φ(x) = JTr (x)r(x) and the Hessian is

Hφ(x) = J
T
r (x)Jr(x) +

m∑
i=1

ri(x)Hri(x).



Gauss-Newton Method
I The Hessian for nonlinear least squares problems has the form:

Hφ(x) = J
T
r (x)Jr(x) +

m∑
i=1

ri(x)Hri(x).

The second term is small when the residual function r(x) is small, so
approximate

Hφ(x) ≈ Ĥφ(x) = J
T
r (x)Jr(x).

I The Gauss-Newton method is Newton iteration with an approximate Hessian:

xk+1 = xk − Ĥφ(xk)
−1∇f(xk) = xk − (JTr (xk)Jr(xk))

−1JTr (xk)r(xk).

Recognizing the normal equations, we interpret the Gauss-Newton method as
solving linear least squares problems Jr(xk)sk ∼= r(xk),xk+1 = xk + sk.

I The Levenberg-Marquardt method incorporates Tykhonov regularization into
the linear least squares problems within the Gauss-Newton method.



Constrained Optimization Problems
I We now return to the general case of constrained optimization problems:

min
x
f(x) subject to g(x) = 0 and h(x) ≤ 0

When f is quadratic, while h, g is linear, this is a quadratic optimization
problem.

I Generally, we will seek to reduce constrained optimization problems to a
series of unconstrained optimization problems:

I sequential quadratic programming: solve an unconstrained quadratic
optimization problem at each iteration,

I penalty-based methods: solve a series of more complicated (more
ill-conditioned) unconstrained optimization problems,

I active set methods: define sequence of optimization problems with inequality
constrains ignored or treated as equality constraints.



Sequential Quadratic Programming
I Sequential quadratic programming (SQP) corresponds to using Newton’s

method to solve the equality constrained optimality conditions, by finding
critical points of the Lagrangian function L(x,λ) = f(x) + λTg(x),

∇L(x,λ) =
[
∇f(x) + JTg (x)λ

g(x)

]
= 0

I At each iteration, SQP computes
[
xk+1

λk+1

]
=

[
xk
λk

]
+

[
sk
δk

]
by solving

HL(xk,λk)

[
sk
δk

]
= −∇L(xk,λk)

where

HL(xk,λk) =

[
B(xk,λk) JTg (xk)

Jg(xk) 0

]
with B(x,λ) =Hf (x)+

m∑
i=1

λiHgi(x)

Demo: Sequential Quadratic Programming

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/06-optimization/Sequential Quadratic Programming.html


Inequality Constrained Optimality Conditions
I The Karush-Kuhn-Tucker (KKT) conditions hold for local minima of a problem

with equality and inequality constraints, the key conditions are
I First, any minima x∗ must be a feasible point, so g(x∗) = 0 and h(x∗) ≤ 0.
I We say the ith inequality constraint is active at a minima x∗ if hi(x∗) = 0.
I The collection of equality constraints and active inequality constraints q∗,

satisfies q∗(x∗) = 0.
I The negative gradient of the objective function at the minima must be in the row

span of the Jacobian of this collection of constraints:

−∇f(x∗) = JTq∗(x∗)λ∗ where λ∗ are Lagrange multiplers of constraints in q∗.

I To use SQP for an inequality constrained optimization problem, consider at
each iteration an active set of constraints:

I Active set qk contains all equality constraints and all inequality constraints that
are exactly satisfied or violated at xk.

I Perform one step of Newton’s method to minimize Lk(x,λ) = f(x) + λTqk(x)
with respect to x and λ, then update active set.



Penalty Functions

I Alternatively, we can reduce constrained optimization problems to
unconstrained ones by modifying the objective function. Penalty functions
are e�ective for equality constraints g(x) = 0:

φρ(x) = f(x) +
1

2
ρg(x)Tg(x)

is a simple merit function, and its solutions x∗ρ satisfy limρ→∞ x
∗
ρ = x

∗.
However, the Hessian of φρ becomes increasingly ill-conditioned for large ρ,
leading to slow convergence.

I The augmented Lagrangian function provides a more numerically robust
approach:

Lρ(x,λ) = f(x) + λTg(x) +
1

2
ρg(x)Tg(x)



Barrier Functions
I Barrier functions (interior point methods) provide an e�ective way of working

with inequality constraints h(x) ≤ 0:
I Provided we start at a feasible point, modify objective function so it diverges to
∞ when approaching border of feasible region.

I Inverse barrier function:

φµ(x) = f(x)− µ
m∑
i=1

1

hi(x)
.

I Logarithmic barrier function:

φµ(x) = f(x)− µ
m∑
i=1

log(−hi(x)).

I When using su�ciently small steps, we have x∗µ → x∗ as µ→ 0.
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