
CS 450: Numerical Anlaysis1

Partial Di�erential Equations

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).

http://heath.cs.illinois.edu/scicomp/notes/index.html

Partial Di�erential Equations
I Partial di�erential equations (PDEs) describe physical laws and other

continuous phenomena:
I They contain partial derivatives in multiple variables.
I Examples include: electromagnetism, fluid flow, quantum mechanics, and

general relativity.

I The advection PDE describes basic phenomena in fluid flow,

ut = −a(t, x)ux

where ut = ∂u/∂t and ux = ∂u/∂x.
I Generally, we impose an initial condition with respect to t, i.e., u(0, x) = u0(x).
I Boundary conditions are also often exposed on boundary of domain.
I When a(t, x) = c this is the Cauchy problem with solution,

u(t, x) = u0(x− ct).

Types of PDEs
I Some of the most important PDEs are second order:

I Heat equation (di�usion), ut = uxx
I Wave equation (oscillation), utt = uxx
I Laplace equation (steady-state), uxx + uyy = 0

Any PDE of the form

auxx + buxy + cuyy + dux + euy + fu+ g = 0

behaves (has the character) of one of the above equations.
I The discriminant determines the canonical form of second-order PDEs:

The discriminant is r = b2 − 4ac and linear PDEs are classified as
r > 0 : hyperbolic, wave-equation-like
r = 0 : parabolic, heat-equation-like
r < 0 : elliptic, Laplace-equation-like

When coe�cients are varying, a PDE may exhibit di�erent behavior in
di�erent parts of the domain.

Demo: Time-dependent PDEs

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/11-sparse-matrices-pdes/Time-dependent PDEs.html

Characteristic Curves
I A characteristic of a PDE is a level curve in the solution:

I For the Cauchy form of the advection equation, ut = −cux, a characteristic x̂(t)
satisfies u(t, x̂(t)) = const.

I One of their uses is identifying where boundary conditions must be imposed, e.g.
for the Cauchy equation, it tells us whether boundary conditions are needed on
the left or the right (in terms of x) of the domain.

I More generally, characteristic curves describe curves in the solution field
u(t, x) that correspond to solutions of ODEs, e.g. for ut = −a(t, x)ux with
u(0, x) = u0(x),

x̂′(t) = −a(t, x̂(t)) with initial condition x̂(0) = x0.

These characteristic curves give solutions û(t, x) = u0(x̂(t)), which satisfy the
advection PDE ut = −a(t, x)ux, since

ût = x̂′(t)u′0(x̂(t)) = −a(t, x)u′0(x̂(t)) = −a(t, x)ûx.

Method of Lines
I Semidiscrete methods obtain an approximation to the PDE by solving a

system of ODEs. Consider the heat equation,

ut = cuxx on 0 ≤ x ≤ 1, u(0, x) = f(x), u(t, 0) = u(t, 1) = 0.

I We discretize over x and use finite di�erences to approximate

uxx ≈
u(t, xi+1)− 2u(t, xi) + u(t, xi−1)

(∆x)2
.

I This approximation yields a system of ODE IVPs, where yi(t) ≈ u(t, xi),

y′i(t) =
c

(∆x)2

(
yi+1(t)− 2yi(t) + yi−1(t)

)
, yi(0) = f(xi).

I In vector form, we obtain a linear constant-coe�cient ODE, y′(t) = Ay(t),
where A is tridiagonal.

I This method of lines often yields a sti� ODE:
I The eigenvalues of A are in [−4c/(∆x)2, 0], which gives sti� ODE for ∆x� 1.
I Heat dissipates very rapidly when concentrated, but slowly overall.

Semidiscrete Collocation
I Instead of finite-di�erences, we can express u(t, x) in a spatial basis
φ1(x), . . . , φn(x) with time-dependent coe�cients α1(t), . . . , αn(t):

u(t, x) ≈ v(t, x,α(t)) =

n∑
j=1

αj(t)φj(x)

Semidiscrete collocation methods then ensure the approximation is exact on
x1, . . . , xn, yielding system of ODEs.

I For the heat equation ut = cuxx, we obtain a linear constant-coe�cient
vector ODE:

n∑
j=1

∂αj
∂t

(t)φj(xi)︸ ︷︷ ︸
mij

= c

n∑
j=1

αj(t)
∂2φj
∂x2

(xi)︸ ︷︷ ︸
nij

written in matrix form,
α′(t) = cM−1Nα(t)

Fully Discrete Methods
I Generally, both time and space dimensions are discretized, either by

applying an ODE solver to a semidiscrete method or using finite di�erences.
I Again consider the heat equation ut = cuxx and discretize so u(k)i ≈ u(tk, xi),

u
(k+1)
i − u(k)i

∆t
= c

u
(k)
i+1 − 2u

(k)
i + u

(k)
i−1

(∆x)2
.

I This iterative scheme corresponds to a 3-point stencil,

u
(k+1)
i = u

(k)
i + c∆t

u
(k)
i+1 − 2u

(k)
i + u

(k)
i−1

(∆x)2
.

I The same scheme can be derived by applying Euler’s method to the ODE given
by the method of lines.

Implicit Fully Discrete Methods
I Using Euler’s method for the heat equation, stability requirement is

∆t = O
(
(∆x)2

)
I This step-size restriction on stability can be circumvented by use of implicit

time-stepper, such as backward Euler,

u
(k+1)
i = u

(k)
i + c∆t

u
(k+1)
i+1 − 2u

(k+1)
i + u

(k+1)
i−1

(∆x)2
.

This scheme requires for a tridiagonal matrix system to be solved at each
time-step, but obtains unconditional stability, albeit only first-order accuracy.

I Using the trapezoid method to solve the ODE we obtain the second-order
Crank-Nicolson method,

u
(k+1)
i = u

(k)
i + c∆t

u
(k+1)
i+1 − 2u

(k+1)
i + u

(k+1)
i−1 + u

(k)
i+1 − 2u

(k)
i + u

(k)
i−1

2(∆x)2
.

Convergence and Stability

I Lax Equivalence Theorem: consistency + stability = convergence
I Consistency means that the local truncation error goes to zero, and is easy to

verify by Taylor expansions.
I Stability implies that the approximate solution at any time t must remain

bounded.
I Together these conditions are necessary and su�cient for convergence.

I Stability can be ascertained by spectral or Fourier analysis:
I In the method of lines, we saw that the eigenvalues of the resulting ODE define

the stability region.
I Fourier analysis decomposes the solution into a sum of harmonic functions and

bounds their amplitudes.

CFL Condition

I The domain of dependence of a PDE for a given point (t, x) is the portion of
the problem domain influencing this point through the PDE:

I Generally determined by characteristics of PDE.
I For a stencil method, the numerical solution depends on the set of mesh-points

influencing the mesh point at (t, x).

I The Courant, Friedrichs, and Lewy (CFL) condition states that for an explicit
finite-di�erencing scheme to be stable for a hyperbolic PDE, it is necessary
that the domain of the dependence of the PDE must be contained in the
domain of dependence of the scheme:
Intuitively, we can then achieve stability for fixed ∆t in two ways,

I by choosing a su�ciently large grid spacing ∆x, or
I including more mesh points in our stencil.

Time-Independent PDEs
I We now turn our focus to time-independent PDEs as exemplified by the

Helmholtz equation:
uxx + uyy + λu = f(x, y)

I λ = 0 yields the Poisson equation.
I λ = 0 and f = 0 yields the Laplace equation.
I Boundary conditions (e.g. Dirichlet or Neumann or mixed) are imposed on

domain surface.

I We discretize as before, but no longer perform time stepping:
For example given a domain [0, 1]2, we can

I tile it using n× n mesh points,
I setup finite-di�erence equations on interior,
I setup boundary-condition equations on perimeter.

Finite-Di�erencing for Poisson
I Consider the Poisson equation with equispaced mesh-points on [0, 1]:

I If u is a vector containing the mesh-points, we have that

Dxu+Dyu = b where bi = f(ui)

where Dx and Dy are finite-di�erence operators along x and y dimensions,
respectively.

I Given a di�erencing matrix D (e.g. tridiagonal with 1,−2, 1), we obtain the
matrix equation,

(I ⊗D +D ⊗ I)u = b

where the Kronecker product is defined as

C = A⊗B =


a11B a12B · · ·

a21B
. . .

...

 ,
and the elements of b contain the mesh elements in column-major (or
row-major in this example) order.

Multidimensional Finite Elements
I There are many ways to define localized basis functions, for example in the

2D FEM method2:

We partition the domain into triangles (elements) and define linear basis
functions that are 1 at the intersection of three or more elements (nodes).

2Source: Comsol Multiphysics Cyclopedia https://www.comsol.com/multiphysics/finite-element-method

https://www.comsol.com/multiphysics/finite-element-method

Sparse Linear Systems
I Finite-di�erence and finite-element methods for time-independent PDEs give

rise to sparse linear systems:
I typified by the 2D Laplace equation, where for both finite di�erences and FEM,

(I ⊗ T + T ⊗ I)︸ ︷︷ ︸
A

x = b where T =
1

h2


−2 1

1
.
. . .


I often have O(1) nonzeros per row/column of the matrix,
I for simple/regular problems matrices are near-Toeplitz (same entry along each

(sub/super)diagonal), permitting fast solvers via e.g. FFT.
I Direct methods apply LU or other factorization to A, while iterative methods

refine x by minimizing r = Ax− b, e.g. via Krylov subspace methods.
I Direct methods provide a high-accuracy solution, but may not be e�ective at

leveraging sparsity to reduce cost.
I Iterative methods e�ectively leverage sparsity by computing matrix-vector

products with A, but may require many iterations to achieve high-accuracy.

Direct Methods for Sparse Linear Systems
I It helps to think of A as the adjacency matrix of graph G = (V,E) where
V = {1, . . . n} and aij 6= 0 if and only if (i, j) ∈ E:

I The graph is invariant to permutation of vertices by permutation matrix P .
I Reordering V accordingly transforms the adjacency matrix into P TAP .
I Such reorderings of variables essentially do not change the linear system,

P TAP P Tx︸ ︷︷ ︸
x̂

= b.

I Factorizing the lth row/column in Gaussian elimination corresponds to
removing node i, with nonzeros (new edges) introduces for each k, l such
that (i, k) and (i, l) are in the graph.

I Creates clique (fully connected subgraph) among neighbors of vertex i.
I Di�erent orderings of vertices can result in radically di�erent amounts of fill.
I Finding optimal ordering to reduce fill is NP complete.

Vertex Orderings for Direct Methods
I Select the node of minimum degree at each step of factorization:

Each step minimizes work, but not necessarily amount of fill at that step
(depends on whether neighbors are already connected).

I Graph partitioning also serves to bound fill, remove vertex separator S ⊂ V
so that V \ S = V1 ∪ · · · ∪ Vk become disconnected, then order V1, . . . , Vk, S:
Matrix takes on the form

A =


A11 A1S

.
Akk AkS

AS1 · · · ASk ASS


where each Aii for i ∈ {1, . . . , k} can be factored independently.

I Nested dissection ordering partitions graph into halves recursively, ordering
each separator last.

Demo: Sparse Matrix Factorizations and Fill-In

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/11-sparse-matrices-pdes/Sparse Matrix Factorizations and Fill-In.html

Sparse Iterative Methods
I Sparse iterative methods avoid overhead of fill in sparse direct factorization.

Matrix splitting methods provide the most basic iterative methods:
I These are linear fixed point iterations that solve the linear system:

Mxk+1 = Nxk + b

I The fixed point function is

g(x) = M−1Nx+M−1b.

I We desire to have a fixed point whenever Ax = b, which implies

Mx = Nx+Ax.

I Generally, M and N are chosen so that M −N = A.
I To achieve convergence we need ρ(g) = ρ(M−1N) < 1.

Sparse Iterative Methods
I The Jacobi method is the simplest iterative solver:

I We split up A = D +L+U where D is diagonal while L and UT are strictly
lower triangular.

I Jacobi iteration uses a fixed point scheme with M = D and N = −(L+U),
yielding a diagonal system of equations,

Dx(k+1) = −(L+U)x(k) + b.

I The cost of each iteration of Jacobi is proportional to SpMV with A.

I The Jacobi method converges if A is strictly row-diagonally-dominant:
I A strictly row-diagonally-dominant A satisfies |aii| <

∑
j 6=i |aij |, which implies

that for B = D−1(L+U),∣∣∣∑
j

bij

∣∣∣ =
∣∣∣∑
j 6=i

aij/aii

∣∣∣ < 1⇒ ρ(M−1N) = ρ(B) < 1.

I For the 2D Laplace problem, this condition holds.
I However, the coe�cient in linear convergence cos(πh)→ 1 as h→ 0.

Gauss-Seidel Method
I The Jacobi method takes weighted sums of x(k) to produce each entry of
x(k+1), while Gauss-Seidel uses the latest available values, i.e. to compute
x
(k+1)
i it uses a weighted sum of

x
(k+1)
1 , . . . x

(k+1)
i−1 , x

(k)
i , . . . , x(k)n .

I We can define the method by the splitting M = D +L so that we have

(D +L)x(k+1) = −Ux(k) + b.

I The Gauss-Seidel method performs an in-order traversal of the directed acyclic
adjacency graph induced by the vertex ordering, and updates each vertex by
taking newly computed values from incoming edges and values from the
previous iteration from outgoing edges.

I Gauss-Seidel provides somewhat better convergence than Jacobi:
Convergence and e�ciency depend on vertex ordering and connectivity:

I for 2-D Poisson, spectral radius is cos2(πh),
I computational cost is same as Jacobi, but less parallelism available.

Successive Over-Relaxation
I The successive over-relaxation (SOR) method seeks to improve the spectral

radius achieved by Gauss-Seidel, by choosing

M =
1

ω
D +L, N =

(1

ω
− 1
)
D −U

I In the resulting iterative scheme, we have(1

ω
D +L

)
x(k+1) =

((
1− 1

ω

)
D +U

)
x(k) + b.

I If x(k+1)
GS is the iterate produced by Gauss-Seidel, SOR instead produces

x(k+1) = (1− ω)x(k) + ωx
(k+1)
GS .

I The parameter ω in SOR controls the ‘step-size’ of the iterative method:
I over-relaxation corresponds to ω > 1,
I under-relaxation corresponds to ω < 1,
I generally best choice of ω ∈ (0, 2) is hard to determine.

Demo: Stationary Iterative Methods

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/11-sparse-matrices-pdes/Stationary Iterative Methods.html

Conjugate Gradient
I The solution to Ax = b when A is symmetric positive definite is the minima

of the quadratic optimization problem,

min
x
xTAx− xTb

We can leverage this and employ optimization methods such as conjugate
gradient (CG) in the case when A is SPD.

I Conjugate gradient works by picking A-orthogonal descent directions
Ensures search directions make progress and converge in at most n
iterations.

I The convergence rate of CG is linear with coe�cient
√
κ(A)−1√
κ(A)+1

:

This convergence rate motivates techniques to improve the conditioning of A
to accelerate convergence.

Demo: Jacobi vs Conjugate Gradient

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/11-sparse-matrices-pdes/Jacobi vs Conjugate Gradient.html

Preconditioning
I Preconditioning techniques choose matrix M ≈ A that is easy to invert and

solve a modified linear system with an equivalent solution to Ax = b,

M−1Ax = M−1b

We can then use Krylov subspace methods that build a Krylov subspace of
M−1A rather than A with actually forming the matrix M−1A:

I cost of iteration depends on di�culty of applying M−1,
I convergence rate depends on how close M is to A.

I M is chosen to be an e�ective approximation to A with a simple structure:
I Jacobi preconditioning takes M = D where D is the diagonal of A,
I incomplete factorization (ILU) uses A ≈ LU where the sparsity pattern of L

and U is restricted to that of A (factorization is then generally inexact), and
employs M = LU .

	Types and Applications of PDEs
	Hyperbolic and Parabolic PDEs
	Characteristics
	Semidiscrete Methods
	Fully Discrete Methods for PDEs
	Convergence Criteria

	Elliptic PDEs
	Discretization
	Sparse Direct Methods
	Sparse Iterative Methods

