import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as pt
Let us make a matrix with a defined set of eigenvalues and eigenvectors, given by eigvals
and eigvecs
.
np.random.seed(40)
# Generate matrix with eigenvalues 1...25
nhalf = 12
n = 2*nhalf
eigvals = np.zeros(n,dtype=np.complex)
eigvals[0:nhalf] = np.linspace(1., nhalf, nhalf)+1j*np.linspace(1., nhalf, nhalf)
eigvals[nhalf:] = eigvals[0:nhalf].conj()
eigvecs = np.random.randn(n, n)
print(eigvals)
A = la.solve(eigvecs, np.dot(np.diag(eigvals), eigvecs))
print(la.eig(A)[0])
Set up $Q$ and $H$:
Q = np.zeros((n, n),dtype=np.complex)
H = np.zeros((n, n),dtype=np.complex)
k = 0
Pick a starting vector, normalize it
x0 = np.random.randn(n)#+1j*np.random.randn(n)
x0 = x0/la.norm(x0)
# Poke it into the first column of Q
Q[:, k] = x0
del x0
Make a list to save arrays of Ritz values, including the maximum Ritz value:
ritz_values = []
ritz_max = []
Carry out one iteration of Arnoldi iteration.
Run this cell in-place (Ctrl-Enter) until H is filled.
print(k)
u = A @ Q[:, k]
# Carry out Gram-Schmidt on u against Q
for j in range(k+1):
qj = Q[:, j]
H[j,k] = np.inner(qj.conj(), u)
u = u - H[j,k]*qj
if k+1 < n:
H[k+1, k] = la.norm(u)
Q[:, k+1] = u/H[k+1, k]
k += 1
pt.spy(H)
D = la.eig(H)[0]
max_ritz = D[np.argmax(np.abs(D))]
print(max_ritz)
ritz_max.append(max_ritz)
ritz_values.append(D)
Check that $Q^T A Q =H$:
la.norm(Q[:,:k-1].T.conj() @ A @ Q[:,:k-1] - H[:k-1,:k-1])/ la.norm(A)
Check that Q is orthogonal:
la.norm((Q.T.conj() @ Q)[:k-1,:k-1] - np.eye(k-1))
Look at convergence of largest Ritz value to dominant eigenvalue
max_eigval = eigvals[np.argmax(np.abs(eigvals))]
pt.plot(np.abs(max_eigval-ritz_max)/np.abs(max_eigval))
Enable the Ritz value collection above to make this work.
for i, rv in enumerate(ritz_values[1:]):
pt.plot([i] * len(rv), rv, "x")