Copyright (C) 2020 Andreas Kloeckner
import numpy as np
import matplotlib.pyplot as pt
def rk4_step(y, t, h, f):
k1 = f(t, y)
k2 = f(t+h/2, y + h/2*k1)
k3 = f(t+h/2, y + h/2*k2)
k4 = f(t+h, y + h*k3)
return y + h/6*(k1 + 2*k2 + 2*k3 + k4)
Want to solve:
$$w''(t)=\frac 32w^2$$with $w(0)=4$ and $w(1)=1$. (Example due to Stoer and Bulirsch)
def f(t, y):
w, w_prime = y
return np.array([w_prime, 3/2*w**2])
The following function carries out the shooting method for a given $w'(0)$ using RK4:
def shoot(w_prime):
times = [0]
y_values = [np.array([4, w_prime])]
h = 1/2**7
t_end = 1
while times[-1] < t_end:
y_values.append(rk4_step(y_values[-1], times[-1], h, f))
times.append(times[-1]+h)
y_values = np.array(y_values)
# actually floating-point-equal due to power-of-2 h
assert times[-1] == t_end
print("w'(0) = %g -> w(1)= %.5g" % (w_prime, y_values[-1,0]))
pt.plot(times, y_values[:, 0], label="$w'(0)=%.2g$" % w_prime)
Call shoot
to see if you can solve the boundary value problem.
Start with $w'(0)=0$.
(You may call pt.legend
to take advantage of automatic labeling.)
shoot(0)
shoot(-5)
shoot(-7)
pt.grid()
pt.legend(loc="best")
w'(0) = 0 -> w(1)= 87.08 w'(0) = -5 -> w(1)= 12.058 w'(0) = -7 -> w(1)= 3.6442
<matplotlib.legend.Legend at 0x7ff0e4d85240>
See if you can find another solution to the boundary value problem by starting with $w'(0)=-30$.
(You may call pt.legend
to take advantage of automatic labeling.)
shoot(-30)
shoot(-33)
shoot(-36)
pt.grid()
pt.legend(loc="best")
w'(0) = -30 -> w(1)= -1.4668 w'(0) = -33 -> w(1)= -0.22938 w'(0) = -36 -> w(1)= 1.062
<matplotlib.legend.Legend at 0x7ff0e5138c50>