Copyright (C) 2020 Andreas Kloeckner
Sympy variables are created using unique string identifiers.
import sympy as sp
import numpy as np
x = sp.Symbol("x")
y = sp.Symbol("y")
z = sp.Symbol("z")
One can form expression from symbols. Sympy expressions are made up of numbers, symbols, and sympy functions.
expression = x**2. + y**2. + z ** 2.
expression
x**2.0 + y**2.0 + z**2.0
Two expressions may be added together to form a new one.
other_expression = x**2.
expression += other_expression
expression
2*x**2.0 + y**2.0 + z**2.0
One can form sympy Matrix
objects.
sp.Matrix([[1,2],[3,4]])
Matrix([ [1, 2], [3, 4]])
An important Matrix
function is eye(n)
, which forms a $n \times n$ identity matrix.
sp.eye(3)
Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]])
One can stuff expressions into matrices, too.
# One can stuff expressions into matrices
f1 = x**2.+y**2-z**2.
f2 = 2*x + y + z
function_matrix = sp.Matrix([f1,f2])
function_matrix
Matrix([ [x**2.0 + y**2 - z**2.0], [ 2*x + y + z]])
One may compute the Jacobian of vector valued functions, too.
function_matrix.jacobian([x,y,z]) # pass in a list of Sympy Symbols to take the Jacobian
Matrix([ [2.0*x**1.0, 2*y, -2.0*z**1.0], [ 2, 1, 1]])
Sympy expressions can be evaluated by passing in a Python dictionary mapping Symbol Symbol
s to specific values.
x_val = 1.0
y_val = 2.0
z_val = 3.0
values={"x":x_val,"y":y_val,"z":z_val}
f1.subs(values)
-4.00000000000000
One can even valuate the Jacobian of functions.
J_mat = function_matrix.jacobian([x,y,z]).subs(values)
J_mat
Matrix([ [2.0, 4.0, -6.0], [ 2, 1, 1]])
To convert a Sympy Matrix
into a Numpy array, one may use the following:
np.array(J_mat)
array([[2.00000000000000, 4.00000000000000, -6.00000000000000], [2, 1, 1]], dtype=object)
After evaluating an expression in Sympy, the return type is a sympy.Float
.
However, this is not readily usable by Numpy. Therefore, consider casting sympy.Float
to a numpy.float64
.
J=np.array(J_mat).astype(np.float64)
J
array([[ 2., 4., -6.], [ 2., 1., 1.]])
At this point, one cna do all the usual stuff one would in Numpy.
J.T@J
array([[ 8., 10., -10.], [ 10., 17., -23.], [-10., -23., 37.]])
Symp's Lambdify
can help increase the speed of Sympy's numerical computations.
function_matrix.subs(values)
Matrix([ [-4.0], [ 7.0]])
from sympy.utilities.lambdify import lambdify
array2mat = [{'ImmutableDenseMatrix': np.array}, 'numpy']
lam_f_mat = lambdify((x,y,z), function_matrix, modules=array2mat)
lam_f_mat(1,2,3)
array([[-4.], [ 7.]])
Or if it is more convenient to have the function evaluation occur from a list of some sort, the Python *
operator on lists can help.
lam_f_mat(*[1,2,3])
array([[-4.], [ 7.]])