Copyright (C) 2010-2020 Luke Olson
Copyright (C) 2020 Andreas Kloeckner
import numpy as np
import matplotlib.pyplot as pt
def rk4_step(y, t, h, f):
k1 = f(t, y)
k2 = f(t+h/2, y + h/2*k1)
k3 = f(t+h/2, y + h/2*k2)
k4 = f(t+h, y + h*k3)
return y + h/6*(k1 + 2*k2 + 2*k3 + k4)
mesh = np.linspace(0, 1, 200)
dx = mesh[1]-mesh[0]
(all of the PDEs below use periodic boundary conditions: $u(0)=u(1)$)
Advection equation: $u_t+u_x=0$
Equivalent: $u_t=-u_x$
def f_advection(t, u):
du = (np.roll(u, -1, axis=-1) - np.roll(u, 1, axis=-1))/(2*dx)
return -du
Heat equation: $u_t=u_{xx}$
def f_heat(t, u):
d2u = (
np.roll(u, -1, axis=-1)
- 2*u
+ np.roll(u, 1, axis=-1))/(dx**2)
return d2u
Wave equation: $u_{tt}=u_{xx}$
NOTE: Two time derivatives $\rightarrow$ convert to first order ODE.
$$u_t=v$$$$v_t=u_{xx}$$def f_wave(t, w):
u, v = w
d2u = (
np.roll(u, -1, axis=-1)
- 2*u
+ np.roll(u, 1, axis=-1))/(dx**2)
return np.array([v, d2u])
Initial condition
current_t = 0
#current_u = np.sin(2*np.pi*mesh)*0.5+1
#current_u = (mesh > 0.3) & (mesh < 0.7)
#current_u = (mesh > 0.45) & (mesh < 0.55)
current_u = np.exp(-(mesh-0.5)**2*150)
#current_u = 2*np.abs(mesh-0.5)
current_u = np.array([current_u], dtype=np.float64)
current_u.shape
(1, 200)
# Add a second component if needed (for wave equation)
current_u = np.vstack([current_u,np.zeros(len(mesh))])
current_u.shape
(2, 200)
Time loop
Run this cell many times in place (using Ctrl-Enter):
dt = dx # experiment with this
#current_f = f_advection
#current_f = f_heat
current_f = f_wave
for i in range(5): # takes this many time steps at a time
current_u = rk4_step(current_u, current_t, dt, current_f)
current_t += dt
pt.ylim([-0.25, 1.25])
pt.grid()
pt.plot(mesh, current_u[0])
[<matplotlib.lines.Line2D at 0x7ff76cdad668>]