Changing the Matrix

So far, only discussed changing the RHS, i.e. $A\mathbf{x} = \mathbf{b} \rightarrow A\hat{\mathbf{x}} = \hat{\mathbf{b}}$. The matrix consists of FP numbers, too—it, too, is approximate. I.e.

$$A\mathbf{x} = \mathbf{b} \quad \rightarrow \quad \widehat{A}\widehat{\mathbf{x}} = \mathbf{b}.$$

What can we say about the error due to an approximate matrix?

$$\hat{\lambda} = \chi + \Delta \chi \qquad \hat{A} = A + \Delta A$$

$$\frac{\|\Delta \chi\|}{\|\hat{\chi}\|} ? \qquad = A^{-1}(A\hat{\chi} - \hat{A}\hat{\chi}) = -A^{-1}\Delta A\hat{\chi}$$

$$= K \cdot \|\Delta \chi\| \leq \|A^{-1}\| \cdot \|\Delta A\| \cdot \|\hat{\chi}\|$$

$$= K \cdot \|A\| \qquad ||\Delta \chi|| \leq \|A^{-1}\| \cdot \|\Delta A\| \cdot \|\hat{\chi}\|$$

$$= K \cdot \|A\| \qquad ||\Delta \chi|| \leq \|A^{-1}\| \cdot \|\Delta A\| \cdot \|\hat{\chi}\|$$

$$= K \cdot \|A\| \qquad ||\Delta \chi|| \leq \|A^{-1}\| \cdot \|\Delta A\| \cdot \|\hat{\chi}\|$$

$$= K \cdot \|A\| \cdot \|A\| \cdot \|A\| \cdot \|A\| \cdot \|A\| \cdot \|A\|$$

Changing Condition Numbers

Once we have a matrix A in a linear system $A\mathbf{x} = \mathbf{b}$, are we stuck with its condition number? Or could we improve it?

$$\frac{DAx = Db}{ADx} = \frac{1}{1} \frac$$

What is this called as a general concept?

- Left preconditioning
$$\pi = (DA)^T(Pb)$$

- Right precon. $\bar{\chi} = (AD)^Tb$, $\chi = D\bar{\chi}$

In-Class Activity: Matrix Norms and Conditioning

In-class activity: Matrix Norms and Conditioning

Singular Value Decomposition (SVD)

What is the Singular Value Decomposition of an $m \times n$ matrix?

$$A = U \sum V^{T}$$
orth $\sum V^{T} V^{T}$

Computing the 2-Norm

Using the SVD of *A*, identify the 2-norm.

$$A = U \Sigma V^T$$
 $- ||A||_2 = ||Z||_2 = ||max|$
 $- ||QB||_2 = ||B||_2 = ||BQ||_2, Q oth$

Express the matrix condition number $cond_2(A)$ in terms of the SVD:

Not a matrix norm: Frobenius

The 2-norm is very costly to compute. Can we make something simpler?

What about its properties?

-
$$||A||_{F} > 0$$
, $||A||_{F} = 0 \Leftrightarrow A = 0$
- $||A||_{F} = \lambda ||A||_{F}$
- $||A + B||_{F} \leq ||A||_{F} + 1||B||_{F}$

Frobenius Norm: Properties

Is the Frobenius norm induced by any vector norm?

How does it relate to the SVD?

$$||A||_F = \int_{\mathcal{F}} \mathcal{G}_{\mathcal{F}}^2$$

$$||A||_F = \int_{\mathcal{F}} \mathcal{G}_{\mathcal{F}}^2$$
*Errata: the square root was missing from the original scribbles

Solving Systems: Simple cases

Solve Dx = b if D is diagonal. (Computational cost?)

Solve Qx = b if Q is orthogonal. (Computational cost?)

Given SVD $A = U\Sigma V^T$, solve $A\mathbf{x} = \mathbf{b}$. (Computational cost?)

Solving Systems: Triangular matrices

Solve

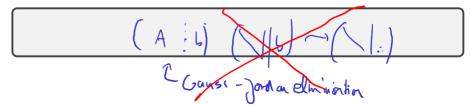
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ & a_{22} & a_{23} & a_{24} \\ & & a_{33} & a_{34} \\ & & & a_{44} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}.$$

Demo: Coding back-substitution [cleared]

What about non-triangular matrices?

Gaussian Elimination

Demo: Vanilla Gaussian Elimination [cleared]


What do we get by doing Gaussian Elimination?

How is that different from being upper triangular?

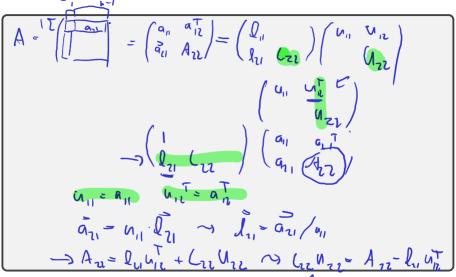
What if we do not just eliminate downward but also upward?

LU Factorization

What is the LU factorization?

Solving Ax = b

Does LU help solve
$$Ax = b$$
?


$$A = b$$

$$C(x) = b$$

$$C(y) = b = f_m \text{ subst.} \Rightarrow O(n^2)$$

$$(x) = y = b_m \text{ subst.} \Rightarrow O(n^2)$$

Determining an LU factorization

19 1/2 (m-1

Demo: LU Factorization [cleared]

Computational Cost

What is the computational cost of multiplying two $n \times n$ matrices?

$$(AB)_{ij} = \sum_{k} Q_{ik} b_{kj} \qquad 0 (n^{3})$$

$$0 (n^{k}) u_{11} = a_{11}, u_{12}^{T} = a_{12}^{T}.$$

$$0 (n^{k}) I_{21} = a_{21}/u_{11}.$$

$$0 (n^{k}) L_{22}U_{22} = A_{22} - I_{21}u_{12}^{T}.$$

What is the computational cost of carrying out LU factorization on an $n \times n$ matrix?

Demo: Complexity of Mat-Mat multiplication and LU [cleared]