Rayleigh Quotient Iteration

$$
A=x^{-1} D x
$$

Describe Rayleigh Quotient Iteration.

$$
\frac{x^{\prime} A x}{x^{\top} x}
$$

Demo: Power Iteration and its Variants [cleared]

In-Class Activity: Eigenvalues

In-class activity: Eigenvalues

Schur form $\quad \longrightarrow$ with red eiganandues on is wan-defective
Show: Every matrix is orthonormally similar to an upper triangular matrix, ie. $A=Q U Q^{\top}$. This is called the Schur form or Schur factorization.

$$
\begin{aligned}
& A_{v}=\lambda v \quad V=\operatorname{spon}(\vec{v}) \\
& A: V \rightarrow V \\
& V^{\perp} \rightarrow V \oplus V^{L} \\
& A=\underbrace{\left(\begin{array}{cc}
1 & B_{1} \\
i & \text { Basion ot } \\
1 & v^{+}
\end{array}\right)}_{Q_{1}} \underbrace{1} \begin{array}{l}
1 \\
0
\end{array} a_{1}^{\top})
\end{aligned}
$$

Schur Form: Comments, Eigenvalues, Eigenvectors
$A=Q U Q^{T}$. For complex λ :

- Either complex matrices, or
- 2×2 blocks on diag.

If we had a Schur form of A, how can we find the eigenvalues?

And the eigenvectors?

