Computing the SVD (Kiddy Version)
How can I compute an SVD of a matrix A ?

$$
\begin{aligned}
& A=U \Sigma V^{\top} \Rightarrow A^{\top} A=V \Sigma u^{\top} U \Sigma V^{\top}=V \Sigma^{\top} V{ }^{\top} \\
& \Rightarrow{ }^{\top} A^{\top} A V=V \Sigma^{\top} \underline{V^{\top} V}=V \Sigma^{2} \\
& \underline{U}=A\left(\Sigma V^{\top}\right)^{\top}=A V \Sigma_{\Omega}^{-1}
\end{aligned}
$$

(3)

Outline

Introduction to Scientific Computing
Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations
Introduction
Iterative Procedures
Methods in One Dimension
Methods in n Dimensions ("Systems of Equations")

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Solving Nonlinear Equations

Showing Existence
How can we show existence of a root?

- Intermediate value the.
- Inverse Fiction theoren

If $J_{F}=f^{\prime}$ invertible then the er exists a abb around x so that of is invertible function $f^{-1}(0)$

- Contraction mapping theoren y is contractive it then exists a $O<y<1$ so that $\|g(x)-g(y)\| \leqslant \lambda\|x-y\|$
\qquad
In general : no uniqueness seals

Sensitivity and Multiplicity
What is the sensitivity/conditioning of root finding?

$$
\operatorname{cond}(\text { rook finding })=\operatorname{cond}\left(\text { evoludrin of } f^{-1}(0)\right)
$$

What are multiple roots?

$$
0=f(x)=f^{\prime}(x)=f^{\prime m-1)}(x)
$$

root of multiplicity m
How do multiple roots interact with conditioning?
The inverse faction is steep \Rightarrow cold is poor.

In-Class Activity: Krylov and Nonlinear Equations

In-class activity: Krylov and Nonlinear Equations

Rates of Convergence
What is linear convergence? quadratic convergence?

$$
\begin{aligned}
e_{k}= & \hat{u}_{k}-u, \quad e_{k} \rightarrow 0 \text { as } k \rightarrow \infty \\
& \lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|^{2}}=c \in(0,+\infty)
\end{aligned}
$$

$-r=1$ linear. (power iteration)

- $r>1$ super linear
- $r=2$ quadratic (Rayleigh quotient items)

About Convergence Rates

Demo: Rates of Convergence [cleared]
Characterize linear, quadratic convergence in terms of the 'number of accurate digits'.

