Differentiation Matrices

How can numerical differentiation be cast as a matrix-vector operation?
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Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Build D)
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Finite Difference Formulas from Diff. Matrices

How do the rows of a differentiation matrix relate to FD formulas?
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Assume a large equispaced grid and 3 nodes w/same spacing. How to use?
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Finite Differences: via Taylor
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More Finite Difference Rules

Similarly:
2h
(Centered differences)
Can also take higher order derivatives:
F1(x) = f(x+h)— 2fh(2x) + f(x — h) +o(h?)

Can find these by trying to match Taylor terms.

Alternative: Use linear algebra with interpolate-then-differentiate to find
FD formulas.

Demo: Finite Differences vs Noise [cleared]

Demo: Floating point vs Finite Differences [cleared]
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Richardson Extrapolation

Deriving high-order methods is hard work. Can | just do multiple low-order

approximations (with different h and get a high-order one out?
Suppose we hav@: E(h) + O(h?) and E(hy) and E(hy).
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Richardson Extrapolation: Observations,

What are a and S for a first-order
choose hy @
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(e.g. finite-difference) method if we
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Demo: Richardson with Finite Differences [cleared]
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Romberg Integration

Can this be used to get even higher order accuracy?
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In-Class Activity: Differentiation and Quadrature

In-class activity: Differentiation and Quadrature
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Outline

Initial Value Problems for ODEs
Existence, Uniqueness, Conditioning
Numerical Methods (1)

Accuracy and Stability
Stiffness
Numerical Methods (I1)
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What can we solve already?

» Linear Systems: yes
» Nonlinear systems: yes

» Systems with derivatives: no



Some Applications

IVPs BVPs
» Population dynamics > bridge load
yi = yi(a1 — B1y2) (prey) » pollutant concentration
2 = y2(—02 + Bay1) (steady state)
(predator) > temperature
» chemical reactions (steady state)
» equations of motion > waves

(time-harmonic)
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Initial Value Problems: Problem Statement
Want: Function y : [0, T] — R" so that
> yW(t) = F(t,y,y.y",...,y D) (explicit), or
> f(t,y,y,y",....y®¥))=0 (implicit)

are called explicit/implicit kth-order ordinary differential equations (ODEs).

Give a simple example.
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Not uniquely solvable on its own. What else is needed?

Inithal WVLO\;\*;'UM—
l6(.0) ‘-‘-&9.
HIC, t #00E =K

269



Reducing ODEs to First-Order Form

A kth order ODE can always be reduced to first order. Do this in this
example:

y'(t) = f(y

Ley {i; él = 3 (fcg&)

= o% cuve obrt Lt oeder W(%
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