
Runge-Kutta/‘Single-step’/‘Multi-Stage’ Methods
Idea: Compute intermediate ‘stage values’, compute new state from those:

Can summarize in a Butcher tableau:
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Runge-Kutta: Properties

When is an RK method explicit?

When is it implicit?

When is it diagonally implicit? (And what does that mean?)
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Heun and Butcher

Stuff Heun’s method into a Butcher tableau:

1. ỹk+1 = yk + hf (yk)

2. yk+1 = yk +
h

2
(f (yk) + f (ỹk+1)).
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RK4

What is RK4?

Demo: Dissipation in Runge-Kutta Methods [cleared]
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Multi-step/Single-stage/Adams Methods/Backward Differencing

Formulas (BDFs)

Idea: Instead of computing stage values, use history (of either values of f
or y–or both):

Method relies on existence of history. What if there isn’t any? (Such as at
the start of time integration?)
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Stability Regions

Why does the idea of stability regions still apply to more complex time
integrators (e.g. RK?)

Demo: Stability regions [cleared]
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More Advanced Methods

Discuss:

▶ What is a good cost
metric for time
integrators?

▶ AB3 vs RK4

▶ Runge-Kutta-Chebyshev

▶ LSERK and AB34

▶ IMEX and multi-rate

▶ Parallel-in-time
(“Parareal”)
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In-Class Activity: Initial Value Problems

In-class activity: Initial Value Problems
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Outline

Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs
Existence, Uniqueness, Conditioning
Numerical Methods

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics
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BVP Problem Setup: Second Order

Example: Second-order linear ODE

u′′(x) + p(x)u′(x) + q(x)u(x) = r(x)

with boundary conditions (‘BCs’) at a:

▶ Dirichlet u(a) = ua

▶ or Neumann u′(a) = va

▶ or Robin αu(a) + βu′(a) = wa

and the same choices for the BC at b.

Note: BVPs in time are rare in applications, hence x (not t) is typically
used for the independent variable.
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BVP Problem Setup: General Case
ODE:

y ′(x) = f (y(x)) f : Rn
→ R

n

BCs:
g(y(a), y(b)) = 0 g : R2n

→ R
n

(Recall the rewriting procedure to first-order for any-order ODEs.)

Does a first-order, scalar BVP make sense?

Example: Linear BCs Bay(a) + Bby(b) = c .
Is this Dirichlet/Neumann/. . . ?
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Does a solution even exist? How sensitive are they?
General case is harder than root finding, and we couldn’t say much there.

! Only consider linear BVP.

(∗)

{

y 0(x) = A(x)y(x) + b(x)
Bay(a) + Bby(b) = c

To solve that, consider homogeneous IVP

y 0

i (x) = A(x)y i (x)

with initial condition

y i (a) = ei .

Note: y 6= yi . e i is the ith unit vector. With that, build the fundamental

solution matrix

Y (x) =

2

4

| |
y1 · · · yn

| |

3

5
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ODE Systems: Existence
Let

Q := BaY (a) + BbY (b)

Then (∗) has a unique solution if and only if Q is invertible. Solve to find

coefficients:

Qα = c

Then Y (x)α solves (∗) with b(x) = 0.

Define Φ(x) := Y (x)Q−1. So Φ(x)c solves (∗) with b(x) = 0.

Define Green’s function

G (x , y) :=

(

Φ(x)BaΦ(a)Φ
−1(y) y ≤ x ,

−Φ(x)BbΦ(b)Φ
−1(y) y > x .

Then

y(x) = Φ(x)c +

Z

b

a

G (x , y)b(y)dy .

Can verify that this solves (∗) by plug’n’chug.
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