Runge-Kutta/'Single-step'/'Multi-Stage' Methods
Idea: Compute intermediate 'stage values', compute new state from those:

$$
\rightarrow \begin{gathered}
r_{1} \\
\frac{r_{7}}{1} \\
\frac{r_{s}}{r_{s}}
\end{gathered}=\left\{\begin{array}{ccc}
a_{21} & a_{2 s} \\
c_{2} & t_{k}+c_{1} h, \underbrace{}_{1 s} r_{5})) \\
c_{s} & a_{5 c} & a_{s s}
\end{array}\right.
$$

Can summarize in a Butcher tableau: $\quad, \tilde{y}_{k+1}=y_{u}+h\left(\tilde{\zeta}_{1} r_{1}+\cdots+\tilde{\sigma}_{s} r_{s}\right)$

Runge-Kutta: Properties

When is an RK method explicit?

When is it implicit?

When is it diagonally implicit? (And what does that mean?)

Heun and Butcher

$$
\begin{aligned}
& r_{1}=f\left(y_{k}+h\left(0 \cdot r_{1}+0 \cdot r_{2}\right) \mid\right. \\
& c_{2}=f\left(y_{u}+h\left(1-r_{1}+\underline{f}-r_{1}\right) \quad \underset{y_{n+1}}{\longrightarrow} t\right.
\end{aligned}
$$

Stuff Heun's method into a Butcher tableau:

1. $\tilde{y}_{k+1}=y_{k}+1 h\left(y_{k}\right)$

2. $y_{k+1}=y_{k}+\frac{h}{2}\left(f\left(y_{k}\right)+\left(f\left(\tilde{y}_{k+1}\right)\right)\right.$.

$$
\text { \# slays }\left(\begin{array}{l|ll}
0 & 0 & 0 \\
1 & 1 & 0 \\
\hline & \frac{1}{2} & 1 \\
\hline & 2
\end{array}\right.
$$

$$
\text { FEE } \underset{\text { Hf }}{\uparrow} \quad \lambda=i
$$

What is RK4?

0				
$\frac{1}{2}$	$\frac{1}{2}$			
$\frac{1}{2}$		$\frac{1}{2}$		
1				
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

$$
\begin{aligned}
k_{1} & =f\left(t_{n}, y_{n}\right) \\
k_{2} & =f\left(t_{n}+\frac{h}{2}, y_{n}+h \cdot \frac{k_{1}}{2}\right) \\
k_{3} & =f\left(t_{n}+\frac{h}{2}, y_{n}+h \cdot \frac{k_{2}}{2}\right) \\
k_{4} & =f\left(t_{n}+h, y_{n}+h k_{3}\right) \\
y_{n+1} & =y_{n}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
$$

Demo: Dissipation in Runge-Kutta Methods [cleared]

Multi-step/Single-stage/Adams Methods/Backward Differencing Formulas (BDFs)

Idea: Instead of computing stage values, use history (of either values of f or y-or both):

$$
y_{k+1}=\sum_{i=1}^{M} \alpha_{i} y_{k+1-i}+h \sum_{i=1}^{N} \beta_{i} f\left(y_{k+1-i}\right)
$$

Method relies on existence of history. What if there isn't any? (Such as at the start of time integration?)
Not self-starting.

Stability Regions

$$
C \begin{aligned}
& y^{\prime}=\lambda y \leftarrow \text { universally l esl ODE } \\
& y^{\prime}=A y
\end{aligned} \longrightarrow h \lambda
$$

Why does the idea of stability regions still apply to more complex time integrators (e.g. RK?)
as long as the inkquater "leaves the y whole h^{n}) only does linear combinations of y, then what diayonalizes A also diagonalizes the
Demo: Stability regions [cleared]

More Advanced Methods

Discuss:

- What is a good cost metric for time integrators?
- AB3 vs RK4
- Runge-Kutta-Chebyshev \in
- LSERK and AB34
- IMEX and nulti-rate
- Parallel-in-time ("Parareal")

In-Class Activity: Initial Value Problems

In-class activity: Initial Value Problems

Outline

Introduction to Scientific Computing
Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs
Boundary Value Problems for ODEs

Existence, Uniqueness, Conditioning

Numerical Methods

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

BVP Problem Setup: Second Order

Example: Second-order linear ODE

$$
u^{\prime \prime}(x)+p(x) u^{\prime}(x)+q(x) u(x)=r(x)
$$

with boundary conditions (' $B C s^{\prime}$) at a:

- Dirichlet $u(a)=u_{a}$

- or Neumann $u^{\prime}(a)=v_{a}$
- or Robin $\alpha u(a)+\beta u^{\prime}(a)=w_{a}$
and the same choices for the BC at b.
Note: BVPs in time are rare in applications, hence x (not t) is typically used for the independent variable.

BVP Problem Setup: General Case ODE:

$$
\rightarrow \boldsymbol{y}^{\prime}(\underline{x})=\boldsymbol{f}(\boldsymbol{y}(x)) \quad \boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

$B C s$:

$$
\rightarrow \boldsymbol{g}(\boldsymbol{y}(a), \boldsymbol{y}(b))=0 \quad \boldsymbol{g}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}
$$

(Recall the rewriting procedure to first-order for any-order ODEs.)
Does a first-order, scalar BVP make sense?

no, not well posed

Example: Linear PCs $B_{a} \boldsymbol{y}(a)+B_{b} \boldsymbol{y}(b)=\boldsymbol{c}$. Is this Dirichlet/Neumann/...?

$$
y^{\prime}=\left(\begin{array}{l}
y \\
y^{\prime} \\
y^{\prime \prime}
\end{array}\right) \in \text { could be any thy }
$$

Does a solution even exist? How sensitive are they?

General case is harder than root finding, and we couldn't say much there. \rightarrow Only consider linear BVP. Homogeneous

$$
\left\{y^{\prime}=A y\right.
$$

$$
\left\{\begin{array}{l}
B_{a} y(a)+B_{b} y(b)=C
\end{array}\right.
$$

$$
\stackrel{b(x)=0}{\longleftrightarrow}(*)\left\{\begin{array} { l }
{ \boldsymbol { y } ^ { \prime } (x) = A (x) \boldsymbol { y } (x) + \boldsymbol { b } (x) } \\
{ B _ { a } \boldsymbol { y } (a) + B _ { b } \boldsymbol { y } (b) = \underset { \sim } { \boldsymbol { c } } }
\end{array} \stackrel { c = 0 } { \longleftrightarrow } \left\{\begin{array}{l}
y^{\prime}=A y+b \\
B_{a} y(a)+B_{b} y(b)=0
\end{array}\right.\right.
$$

\Downarrow To solve that, consider homogeneous IVP

$$
\boldsymbol{y}_{i}^{\prime}(x)=A(x) \boldsymbol{y}_{i}(x) \quad y=y_{h}+y_{b} \text { solves }(*)
$$

with initial condition

$$
\boldsymbol{y}_{i}(a)=\boldsymbol{e}_{i}
$$

Note: $\boldsymbol{y} \neq \boldsymbol{y}_{\boldsymbol{i}} . \boldsymbol{e}_{\boldsymbol{i}}$ is the i th unit vector. With that, build the fundamental solution matrix

$$
\underline{Y(x)}=\left[\begin{array}{ccc}
\mid & & \mid \\
\boldsymbol{y}_{1} & \cdots & \boldsymbol{y}_{n} \\
\mid & & \mid
\end{array}\right]
$$

ODE Systems: Existence $\quad \int_{D} \delta y(x) f(x) d x=f(y), y \in D$. Let

$$
Q:=B_{a} Y(a)+B_{b} Y(b)
$$

Then (*) has a unique solution if and only if Q is invertible. Solve to find coefficients:

$$
Q \alpha=c
$$

Then $Y(x) \boldsymbol{\alpha}$ solves $(*)$ with $\boldsymbol{b}(x)=0$. Define $\Phi(x):=Y(x) Q^{-1}$. So $\Phi(x) \boldsymbol{c}$ solves $(*)$ with $\boldsymbol{b}(x)=0$. Define Green's function

$$
G(x, y):=\left\{\begin{aligned}
\Phi(x) B_{a} \Phi(a) \Phi^{-1}(y) & y \leq x, \\
-\Phi(x) B_{b} \Phi(b) \Phi^{-1}(y) & y>x
\end{aligned}\right.
$$

Then

$$
\boldsymbol{y}(x)=\Phi(x) \boldsymbol{c}+\int_{a}^{b} G(x, y) \boldsymbol{b}(y) \mathrm{d} y .
$$

Can verify that this solves (*) by plug'n'chug.

