
Does a solution even exist? How sensitive are they?
General case is harder than root finding, and we couldn’t say much there.

→ Only consider linear BVP.

(∗)

�

y ′(x) = A(x)y(x) + b(x)
Bay(a) + Bby(b) = c

To solve that, consider homogeneous IVP

y ′

i (x) = A(x)y i (x)

with initial condition

y i (a) = ei .

Note: y ̸= yi . e i is the ith unit vector. With that, build the fundamental

solution matrix

Y (x) =





| |
y1 · · · yn

| |




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ODE Systems: Existence
Let

Q := BaY (a) + BbY (b)

Then (∗) has a unique solution if and only if Q is invertible. Solve to find

coefficients:

Qα = c

Then Y (x)α solves (∗) with b(x) = 0.

Define Φ(x) := Y (x)Q−1. So Φ(x)c solves (∗) with b(x) = 0.

Define Green’s function

G (x , y) :=

(
Φ(x)BaΦ(a)Φ

−1(y) y ≤ x ,

−Φ(x)BbΦ(b)Φ
−1(y) y > x .

Then

y(x) = Φ(x)c +

Z
b

a

G (x , y)b(y)dy .

Can verify that this solves (∗) by plug’n’chug.
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ODE Systems: Conditioning

For perturbed problem with b(x) +∆b(x) and c +∆c :

k∆yk
∞

≤ max (kΦk
∞
, kGk

∞
)

(

k∆ck
1
+

Z

k∆b(y)k
1
dy

)

.

I Conditioning bound implies uniqueness.

I Also get continuous dependence on data.
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Shooting Method
Idea: Want to make use of the fact that we can already solve IVPs.
Problem: Don’t know all left BCs.

Demo: Shooting method [cleared]

What about systems?

What are some downsides of this method?

What’s an alternative approach?
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Finite Difference Method

Idea: Replace u′ and u′′ with finite differences.
For example: second-order centered

u
′(x) =

u(x + h)− u(x − h)

2h
+ O(h2)

u
′′(x) =

u(x + h)− 2u(x) + u(x − h)

h2
+ O(h2)

Demo: Finite differences [cleared]

What happens for a nonlinear ODE?

Demo: Sparse matrices [cleared]
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Collocation Method

(∗)

{

y 0(x) = f (y(x),
g(y(a), y(b)) = 0.

1. Pick a basis (for example: Chebyshev polynomials)

ŷ(x) =

n
X

i=1

αiTi (x)

Want ŷ to be close to solution y . So: plug into (∗).

Problem: ŷ won’t satisfy the ODE at all points at least.
We do not have enough unknowns for that.

2. Idea: Pick n points where we would like (∗) to be satisfied.
! Get a big (non-)linear system

3. Solve that (LU/Newton)! done.
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Galerkin/Finite Element Method

u
00(x) = f (x), u(a) = u(b) = 0.

Problem with collocation: Big dense matrix.

Idea: Use piecewise basis. Maybe it’ll be sparse.

"hat functions"

one " nite element"

What’s the problem with that?
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Weak solutions/Weighted Residual Method
Idea: Enforce a ‘weaker’ version of the ODE.
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Galerkin: Choices in Weak Solutions

Make some choices:

I Solve for u 2 span {hat functions 'i}

I Choose ψ 2 W = span {hat functions 'i} with ψ(a) = ψ(b) = 0.

! Kills boundary term [u0(x)ψ(x)]ba .

These choices are called the Galerkin method. Also works with other bases.
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Discrete Galerkin

Assemble a matrix for the Galerkin method.
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Advertisement

Remark: Both PDEs and Large Scale Linear Algebra are big topics. Will
only scratch the surface here. Want to know more?

▶ CS555 → Numerical Methods for PDEs

▶ CS556 → Iterative and Multigrid Methods

▶ CS554 → Parallel Numerical Algorithms

We would love to see you there! :)
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Solving Sparse Linear Systems

Solving Ax = b has been our bread and butter.

Typical approach: Use factorization (like LU or Cholesky)
Why is this problematic?

Idea: Don’t factorize, iterate.
Demo: Sparse Matrix Factorizations and “Fill-In” [cleared]
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‘Stationary’ Iterative Methods
Idea: Invert only part of the matrix in each iteration. Split

A = M − N,

where M is the part that we are actually inverting. Convergence?

Ax = b

Mx = Nx + b

Mxk+1 = Nxk + b

xk+1 = M
−1(Nxk + b)

▶ These methods are called stationary because they do the same

thing in every iteration.

▶ They carry out fixed point iteration.

→ Converge if contractive, i.e. ρ(M−1
N) < 1.

▶ Choose M so that it’s easy to invert.
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Choices in Stationary Iterative Methods

What could we choose for M (so that it’s easy to invert)?

Name M N

Jacobi D −(L+ U)
Gauss-Seidel D + L −U

SOR 1

ω
D + L

(

1

ω
− 1

)

D − U

where L is the below-diagonal part of A, and U the above-diagonal.

Demo: Stationary Methods [cleared]
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