
Does a solution even exist? How sensitive are they?
General case is harder than root finding, and we couldn’t say much there.

→ Only consider linear BVP.

(∗)

�

y ′(x) = A(x)y(x) + b(x)
Bay(a) + Bby(b) = c

To solve that, consider homogeneous IVP

y ′

i (x) = A(x)y i (x)

with initial condition

y i (a) = ei .

Note: y ̸= yi . e i is the ith unit vector. With that, build the fundamental

solution matrix

Y (x) =





| |
y1 · · · yn

| |





302

ODE Systems: Existence
Let

Q := BaY (a) + BbY (b)

Then (∗) has a unique solution if and only if Q is invertible. Solve to find

coefficients:

Qα = c

Then Y (x)α solves (∗) with b(x) = 0.

Define Φ(x) := Y (x)Q−1. So Φ(x)c solves (∗) with b(x) = 0.

Define Green’s function

G (x , y) :=

(
Φ(x)BaΦ(a)Φ

−1(y) y ≤ x ,

−Φ(x)BbΦ(b)Φ
−1(y) y > x .

Then

y(x) = Φ(x)c +

Z
b

a

G (x , y)b(y)dy .

Can verify that this solves (∗) by plug’n’chug.
303

ODE Systems: Conditioning

For perturbed problem with b(x) +∆b(x) and c +∆c :

k∆yk
∞

≤ max (kΦk
∞
, kGk

∞
)

(

k∆ck
1
+

Z

k∆b(y)k
1
dy

)

.

I Conditioning bound implies uniqueness.

I Also get continuous dependence on data.

304

Shooting Method
Idea: Want to make use of the fact that we can already solve IVPs.
Problem: Don’t know all left BCs.

Demo: Shooting method [cleared]

What about systems?

What are some downsides of this method?

What’s an alternative approach?

305

Finite Difference Method

Idea: Replace u′ and u′′ with finite differences.
For example: second-order centered

u
′(x) =

u(x + h)− u(x − h)

2h
+ O(h2)

u
′′(x) =

u(x + h)− 2u(x) + u(x − h)

h2
+ O(h2)

Demo: Finite differences [cleared]

What happens for a nonlinear ODE?

Demo: Sparse matrices [cleared]

306

Collocation Method

(∗)

{

y 0(x) = f (y(x),
g(y(a), y(b)) = 0.

1. Pick a basis (for example: Chebyshev polynomials)

ŷ(x) =

n
X

i=1

αiTi (x)

Want ŷ to be close to solution y . So: plug into (∗).

Problem: ŷ won’t satisfy the ODE at all points at least.
We do not have enough unknowns for that.

2. Idea: Pick n points where we would like (∗) to be satisfied.
! Get a big (non-)linear system

3. Solve that (LU/Newton)! done.
307

1

Dot n

Galerkin/Finite Element Method

u
00(x) = f (x), u(a) = u(b) = 0.

Problem with collocation: Big dense matrix.

Idea: Use piecewise basis. Maybe it’ll be sparse.

"hat functions"

one " nite element"

What’s the problem with that?

308

U ex fix Hx

U does not exist

44 4 s s

Weak solutions/Weighted Residual Method
Idea: Enforce a ‘weaker’ version of the ODE.

309

moments

gin ya dx fabu ay ex dx
UWyxx

Solve Sabuexit dx fabfexualdx
Sbad a fix Yesdx O

E Ni D

weighted residual methods
collocation 4 e six x

Galerkin: Choices in Weak Solutions

Make some choices:

I Solve for u 2 span {hat functions 'i}

I Choose ψ 2 W = span {hat functions 'i} with ψ(a) = ψ(b) = 0.

! Kills boundary term [u0(x)ψ(x)]ba .

These choices are called the Galerkin method. Also works with other bases.

310

I

Discrete Galerkin

Assemble a matrix for the Galerkin method.

311

fabkeyx'Mdx Jafunyadx Hase Uja

J Édjy a X'a dx is let442 4,4

ÉGabojuliadx d fabfix yield x

Fi
a te

SI I
µ

sparse

Outline

Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra
Sparse Linear Algebra
PDEs

Fast Fourier Transform

Additional Topics

312

Advertisement

Remark: Both PDEs and Large Scale Linear Algebra are big topics. Will
only scratch the surface here. Want to know more?

▶ CS555 → Numerical Methods for PDEs

▶ CS556 → Iterative and Multigrid Methods

▶ CS554 → Parallel Numerical Algorithms

We would love to see you there! :)

313

Solving Sparse Linear Systems

Solving Ax = b has been our bread and butter.

Typical approach: Use factorization (like LU or Cholesky)
Why is this problematic?

Idea: Don’t factorize, iterate.
Demo: Sparse Matrix Factorizations and “Fill-In” [cleared]

314

‘Stationary’ Iterative Methods
Idea: Invert only part of the matrix in each iteration. Split

A = M − N,

where M is the part that we are actually inverting. Convergence?

Ax = b

Mx = Nx + b

Mxk+1 = Nxk + b

xk+1 = M
−1(Nxk + b)

▶ These methods are called stationary because they do the same

thing in every iteration.

▶ They carry out fixed point iteration.

→ Converge if contractive, i.e. ρ(M−1
N) < 1.

▶ Choose M so that it’s easy to invert.
315

Choices in Stationary Iterative Methods

What could we choose for M (so that it’s easy to invert)?

Name M N

Jacobi D −(L+ U)
Gauss-Seidel D + L −U

SOR 1

ω
D + L

(

1

ω
− 1

)

D − U

where L is the below-diagonal part of A, and U the above-diagonal.

Demo: Stationary Methods [cleared]

316

