Does a solution even exist? How sensitive are they?

General case is harder than root finding, and we couldn’t say much there.
— Only consider linear BVP.

g { y'(x) = Ay (x)

B.y(a) + Byy(b)
To solve that, consider homogeneaot
yi(x) = A(x)y;(x)
with initial condition
yi(a) =e;.
Note: y # y;. e; is the ith unit vector. With that, build the fundamental

solution matrix
\ |
Y(X)|:y1 Y
\ |

302

ODE Systems: Existence
Let
Q= B,Y(a) + ByY(b)
Then (*) has a unique solution if and only if Q is invertible. Solve to find
coefficients:
RQa=c
Then Y(x)a solves (x) with b(x) = 0.
Define ®(x) := Y(x)Q@ L. So ®(x)c solves (*) with b(x) = 0.
Define Green's function
d(x)B.®(a)07H(y) y<x,

BT emep)eiy) yex |
Then b \ %}FZG:;L)
y() =o0()et G(x.y)b(y)dy. "

Can verify that this solves (x) by plug'n'chug. v

303

ODE Systems: Conditioning

For perturbed problem with b(x) + Ab(x) and ¢ + Ac:

1Ay [l < max([[®]l G ll0) <||AC|1 + / 1Ab(y)ll; dy) :

» Conditioning bound implies uniqueness.

> Also get continuous dependence on data.

304

Shooting Method

Idea: Want to make use of the fact that we can already solve IVPs.

Problem: Don't know all left BCs. ’” :/)(j/ \7'/
Demo: Shooting method [cleared] > ,{d)g
What about systems? Z S Y (19/

Caw\h@/\{ G:M i movt J"N‘\ lO R

What are some downsides of this method?

— Lo il
~ Con bt andabk cwe e QELS shible

What's an alternative approach?

WhAle n iy Qnesy (- { \et\\ sﬂd«,«

305

Finite Difference Method

Idea: Replace v’ and v with finite differences.
For example: second-order centered

d(x) = u(x + h)2—hu(x— h) +o(r?)
SRR X TOETCEL B

Demo: Finite differences [cleared]

What happens for a nonlinear ODE?

g/l'v@Wl{@) Nodea]

Demo: Sparse matrices [cleared]

306

Collocation Method

§ y'(x) = f(y(x)),
(){ g(y(a),y(b)) = 0.

1. Pick a basis (for example: Chebyshev polynomials)

9= aT) TP
i=1

C——

Want y to be close to solution y. So: plug into (x).
Problem: § won't satisfy the ODE at all points at least.
We do not have enough unknowns for that.

2. Idea: Pick n points where we would like () to be satisfied.

— Get a big (non-)linear system =
3. Solve that (LU/Newton)— done.

307

Galerkin/Finite Element Method
Wy -foy : = Hy
u"(x) = f(x), u(a) = u(b) = 0.
Problem with collocation: Big dense matrix.
Idea: Use piecewise basis. Maybe it'll be sparse.

“ 3 "hat functions"
><><\ 2
—]

¥ u ¥
4N X, XL Xq X o
bt “

one "finite element"

What's the problem with that?

A

W does mt exise
u‘/

~/ 2 ~/

308

Weak solutions/Weighted Residual Method

|dea: Enforce a ‘weaker’ version of the ODE.

= moments ? b, ,
ﬁ Wowpw oy = “jh wRy oc)f[x
HLWewyge],
b, Cab
Sulve = J,u @y de = o Lo oy
5i[u"m~fw]-\£§)dx =0

5) YW =0
’ W(’J'ué,'t—@tl resiuel methodls® oolloce®on + 6= SUG)

309

Galerkin: Choices in Weak Solutions

Make some choices: /\ SE

%
» Solve for u € span {hat functions ¢;}

» Choose ¢ € W = span {hat functions ¢;} with (a) = ¢(b) = 0.
— Kills boundary term [v/(x)¢(x)]%.
These choices are called the Galerkin method. Also works with other bases.

310

Discrete Galerkin
Assemble a matrix for the Galerkin method.

ﬁJ: W(x),Y/’Ck)OlX = \J\:,;FW",’UQD(X) '\'!/Ol)é {‘%\W

—
—_—

“J: i‘ﬁj?J'CR)W'Wd@ = v, Yw=Y6
0'&

S Ttb o i wdy o = (2 Fwrdieodx
2 [ojwdio Xlo% o4 ‘°F

X

N
&
S N
*
j'l)&f.(-@,,

|

311

Outline

Partial Differential Equations and Sparse Linear Algebra
Sparse Linear Algebra
Es

312

Advertisement
Q/

Remark: Both PDEs and Large Scale Linear Algebra are big topics. Will
only scratch the surface here. Want to know more?

» (S555 — Numerical Methods for PDEs <~ 5,9”'
» (CS556 — lterative and Multigrid Methods &— &
» (CS554 — Parallel Numerical Algorithms G~ fc fi_

We would love to see you there! :)

CsSct. \inovs.edu
| Bwe ey el
= (g\..‘\

313

Solving Sparse Linear Systems

Solving Ax = b has been our bread and butter.

Typical approach: Use factorization (like LU or Cholesky)
Why is this problematic?

Idea: Don't factorize, iterate.
Demo: Sparse Matrix Factorizations and “Fill-In" [cleared]

314

‘Stationary’ lterative Methods
Idea: Invert only part of the matrix in each iteration. Split

A< M)~ N, @y:é

where M is the part that we are actually inverting. Convérgence?

Ax = b
Mx = b
X1 = M7Y(Nx,+ b)

» These methods are called stationary because they do the same
thing in every iteration.

» They carry out fixed point iteration.
— Converge if contractive, i.e. p(M~IN) < 1.

» Choose M so that it's easy to invert.

315

Choices in Stationary Iterative Methods

What could we choose for M (so that it's easy to invert)?

Name | M N
Jacobi D —(L+ V)
Gauss-Seidel | D + L -U
SOR ip+1 (I-1)D-vU
where L is the below-diagonal part of A, and U the above-diagonal.

Demo: Stationary Methods [cleared]

316

