


LU: Special cases

What happens if we feed a non-invertible matrix to LU?

What happens if we feed LU an m × n non-square matrices?

81



Round-off Error in LU without Pivoting

Consider factorization of
�
ϵ 1
1 1

�
where ϵ < ϵmach:
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Round-off Error in LU with Pivoting

Permuting the rows of A in partial pivoting gives PA =

�
1 1
ϵ 1

�

83



Changing matrices
Seen: LU cheap to re-solve if RHS changes. (Able to keep the expensive
bit, the LU factorization) What if the matrix changes?

Demo: Sherman-Morrison [cleared]
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What about non-square systems?

Specifically, what about linear systems with ‘tall and skinny’ matrices? (A:
m × n with m > n) (aka overdetermined linear systems)

Specifically, any hope that we will solve those exactly?
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Example: Data Fitting

Have data: (xi , yi ) and model:

y(x) = α+ βx + γx2

Find data that (best) fit model!
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Data Fitting Continued
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Rewriting Data Fitting

Rewrite in matrix form.
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Least Squares: The Problem In Matrix Form

∥Ax − b∥2
2 → min!

is cumbersome to write.
Invent new notation, defined to be equivalent:

Ax ∼= b

NOTE:
▶ Data Fitting is one example where LSQ problems arise.
▶ Many other application lead to Ax ∼= b, with different matrices.
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Data Fitting: Nonlinearity
Give an example of a nonlinear data fitting problem.

��exp(α) + βx1 + γx2
1 − y1

��2

+ · · ·+��exp(α) + βxn + γx2
n − yn

��2 → min!

But that would be easy to remedy: Do linear least squares with exp(α) as
the unknown. More difficult:

��α+ exp(βx1 + γx2
1 )− y1

��2

+ · · ·+��α+ exp(βxn + γx2
n )− yn

��2 → min!

Demo: Interactive Polynomial Fit [cleared]
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Properties of Least-Squares

Consider LSQ problem Ax ∼= b and its associated objective function
φ(x) = ∥b − Ax∥2

2. Assume A has full rank. Does this always have a
solution?

Is it always unique?
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Least-Squares: Finding a Solution by Minimization

Examine the objective function, find its minimum.
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Least squares: Demos

Demo: Polynomial fitting with the normal equations [cleared]

What’s the shape of ATA?

Demo: Issues with the normal equations [cleared]
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Least Squares, Viewed Geometrically

Why is r ⊥ span(A) a good thing to require?
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Least Squares, Viewed Geometrically (II)

Phrase the Pythagoras observation as an equation.

Write that with an orthogonal projection matrix P .
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About Orthogonal Projectors
What is a projector?

What is an orthogonal projector?

How do I make one projecting onto span{q1,q2, . . . ,qℓ} for orthogonal q i?
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Least Squares and Orthogonal Projection

Check that P = A(ATA)−1AT is an orthogonal projector onto colspan(A).

What assumptions do we need to define the P from the last question?
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Pseudoinverse
What is the pseudoinverse of A?

What can we say about the condition number in the case of a
tall-and-skinny, full-rank matrix?

What does all this have to do with solving least squares problems?
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