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Secant in n dimensions?
What would the secant method look like in n dimensions?
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Numerically Testing Derivatives
Getting derivatives right is important. How can | test/debug them?
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Outline

Optimization
Introduction
Methods for unconstrained opt. in one dimension
Methods for unconstrained opt. in n dimensions
Nonlinear Least Squares
Constrained Optimization
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Optimization: Problem Statement

Have: Objective function f : R" — R
Want: Minimizer x* € R" so that

f(x*) = minf(x) subjectto g(x)=0 and h(x)<0.

» g(x) =0 and h(x) <0 are called constraints.
They define the set of feasible points x € S C R".

» If g or h are present, this is constrained optimization.
Otherwise unconstrained optimization.

» If f, g, h are linear, this is called linear programming.
Otherwise nonlinear programming. -
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Optimization: Observations

Q: What if we are looking for a maximizer not a minimizer? —> ~IQ

Give some examples:
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What about multiple objectives?
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Existence/Uniqueness

Terminology: global minimum / local minimum

Under what conditions on f can we say something about
existence/uniqueness?
If f: S — R is continuous on a closed and bounded set S C R”, then

Pl avics & mu,

f:S — Ris called coercive on S C R" (whic € unbounded)if
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Convexity - \\
L,

al0<a<1

S C R"is called convex if for all x,y €

&f%(\-a)qc-g

f:S— Riscalled convexon SCR"if forx,y e Sandall 0 <a <1

(el u) € adl2) +1/-3) 93] o
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Q: Give an example|of a convey, but not strictly convex function.
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Convexity: Consequences k:—/ w

If fis convex, ...
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If f is strictly convex, ...
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Optimality Conditions
If we have found a candidate x* for a minimum, how do we know it
actually is one? Assume f is smooth, i.e. has all needed derivatives.
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Optimization: Observations

Q: Come up with a hypothetical approach for finding minima.
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Q: Is the Hessian symmetric?
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Q: How can we practically test for positive definiteness?
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Sensitivity and Conditioning (1D)

How does optimization react to a slight perturbation of the minimum?
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Sensitivity and Conditioning (nD)

How does optimization react to a slight perturbation of the minimum?
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Unimodality

Would like a method like bisection, but for optimization.
In general: No invariant that can be preserved.
Need extra assumption.
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In-Class Activity: Optimization Theory

In-class activity: Optimization Theory
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