- . HU 14 (ec, due tomorrou) . 4(HZ (+5% if in by tomorrow, otherwise during finds) * Final (Dec 8-12)

 - · ICES (please fill than out!)

Euler's Method

Discretize the IVP

$$\left\{\begin{array}{l} \mathbf{y}'(t) = \mathbf{f}(\mathbf{y}) \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{array}\right\}$$

- ▶ Discrete times: $t_1, t_2, ...$, with $t_{i+1} = t_i + h$
- ▶ Discrete function values: $\mathbf{y}_k \approx \mathbf{y}(t_k)$.

Euler's method: Forward and Backward

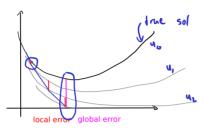
$$\mathbf{y}(t) = \mathbf{y}_0 + \int_{t_0}^t \mathbf{f}(\mathbf{y}(\tau)) d\tau,$$

Use 'left rectangle rule' on integral:

Use 'right rectangle rule' on integral:

Demo: Forward Euler stability [cleared]

Global and Local Error



Let $u_k(t)$ be the function that solves the ODE with the initial condition $u_k(t_k) = y_k$. Define the local error at step k as. . .

Define the global error at step k as. . .

About Local and Global Error

Is global error = \sum local errors?

A time integrator is said to be accurate of order p if...

ODE IVP Solvers: Order of Accuracy

A time integrator is said to be accurate of order p if $\ell_k = O(h^{p+1})$ This requirement is one order higher than one might expect—why?

Stability of a Method

Find out when forward Euler is stable when applied to $y'(t) = \lambda y(t)$.

$$y_{u+1} = y_{h} + h \lambda y_{u}$$

$$= y_{u} (|+h\lambda|)$$

$$= (|+h\lambda|)^{u+1} y_{0}$$

$$|+h\lambda| \leq |+h\lambda|$$

$$|+h\lambda|$$

$$|+h\lambda| \leq |+h\lambda|$$

$$|+h\lambda|$$

$$|+h\lambda| \leq |+h\lambda|$$

$$|+h\lambda|$$

$$|+h\lambda$$

)V W= V z

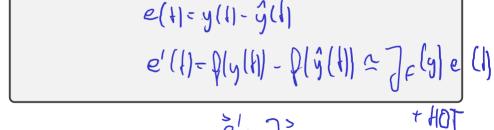
What about stability for systems, i.e. >u;=1;u; $y_{u+1} = y_u + A y_u y'(t) = Ay(t)$? · Diagonalize the system Watt = Vyni V (ya + A ya) - V yn + V A yn = Wa + VV DVyn

souly eigenvalues miller.

What about stability for nonlinear systems, i.e.

Stability: Nonlinear ODEs

$$\mathbf{y}'(t) = \mathbf{f}(\mathbf{y}(t))$$
?



è = 7è C= JÉ

Us skabiregin

Dook at elynvalues of Jacobin of L 289

Stability for Backward Euler

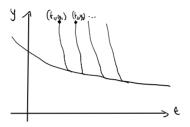
Find out when backward Euler is stable when applied to $y'(t) = \lambda y(t)$.

Demo: Backward Euler stability [cleared]

Stiff ODEs: Demo -> ODE wskb4 Re(1) < 0 (ODE asymptote) Demo: Stiffness [cleared] =) pick any time ster/ stable any way If a method is stable for all h when Re(1) = 0:

(1+100h) yun= yn+h (100++101)

'Stiff' ODEs



- Stiff problems have multiple time scales.
 (In the example above: Fast decay, slow evolution.)
- ▶ In the case of a stable ODE system

$$\mathbf{y}'(t) = \mathbf{f}(\mathbf{y}(t)),$$

stiffness can arise if J_f has eigenvalues of very different magnitude.

Stiffness: Observations

Why not just 'small' or 'large' magnitude?
What is the problem with applying explicit methods to stiff problems?

Predictor-Corrector Methods

Idea: Obtain intermediate result, improve it (with same or different method).

Heun's method -> Ind order global accurage

Runge-Kutta/'Single-step'/'Multi-Stage' Methods

Idea: Compute intermediate 'stage values', compute new state from those:

solve
$$(r_1 = P(t_n + c, h_1, y_n + h_1(\alpha_1, r_1 + \dots + \alpha_1, s, r_s))$$

$$r_2 = P(t_n + c, h_1, y_n + h_1(\alpha_1, r_1 + \dots + \alpha_s, r_s))$$

$$y_{n+1} = y_n + h_1(b_1, r_1 + \dots + b_s, r_s)$$

Can summarize in a Butcher tableau:

Runge-Kutta: Properties

When is an RK method explicit?

nonzeros only below he diagon a

When is it implicit?

otherwise

When is it diagonally implicit? (And what does that mean?)

nonzerous not above the diagnal -> can solve one at a time.

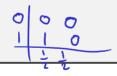
Heun and Butcher

Stuff Heun's method into a Butcher tableau:

$$1. \ \tilde{y}_{k+1} = y_k + hf(y_k)$$

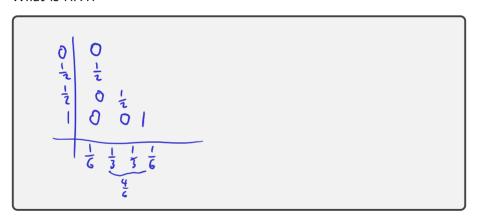
1.
$$\tilde{y}_{k+1} = y_k + hf(y_k)$$

2. $y_{k+1} = y_k + \frac{h}{2}(f(y_k) + f(\tilde{y}_{k+1}))$.



RK4

What is RK4?



Demo: Dissipation in Runge-Kutta Methods [cleared]

Stability Regions

Demo: Stability regions [cleared]

Why does the idea of stability regions still apply to more complex time integrators (e.g. RK?)

More Advanced Methods

Discuss:

- What is a good cost metric for time integrators?
- ► AB3 vs RK4
- Runge-Kutta-Chebyshev
- ► LSERK and AB34
- ► IMEX and multi-rate
- ► Parallel-in-time ("Parareal")

