Recap: Norms

What's a norm?

Define norm.

$$
\begin{aligned}
& \text { - positive definiteness } \\
& \text { - semilinecilt } \\
& \text { - trouble inequality }
\end{aligned}
$$

Norms: Examples

Examples of norms?

$$
\left\|\frac{\vec{x}}{\|\vec{x}\|}\right\|=\frac{1}{\|x\|} \cdot\|x\|=1
$$

$$
\begin{aligned}
& \|\vec{x}\|_{p}=\sqrt[p]{\sum_{i=1}\left|x_{i}\right|^{p}} \quad p \geq 1 \text { or } p-\infty \\
& \|\vec{x}\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
\end{aligned}
$$

Demo: Vector Norms [cleared]

$$
\begin{gathered}
|x|+|y|=1 \\
\|x+y\| \leq\|x\|+\|y\|
\end{gathered}
$$

$$
\psi
$$

Norms: Which one?

Does the choice of norm really matter much? $\quad x \in \mathbb{R}^{4}$

$$
\begin{gathered}
\|x\| \\
\alpha\|x\| \leq\|\vec{x}\|^{*} \leq p\|x\|
\end{gathered}
$$

If α, β exist (and are vlad for all x), the the two norms are called equirclat.

Norms and Errors
If we're computing a vector result, the error is a vector.

$$
d(\vec{k}, \vec{y})=\|\dot{x}+\vec{y}\|
$$

That's not a very useful answer to 'how big is the error'.
What can we do?

Forward/Backward Error
Suppose want to compute $y=f(x)$, but approximate $\hat{y}=\hat{f}(x)$.
What are the forward error and the backward error?
(abri) Forward error $\Delta y= \pm\binom{ 1}{y}$
(ubs.) Bach ward error $\Delta x= \pm(\hat{x}-x)$

Forward/Backward Error: Example

Suppose you wanted $y=\sqrt{2}$ and got $\hat{y}=1.4$. What's the (magnitude of) the forward error?

$$
\begin{aligned}
& 0 . 0 0 0 \longdiv { 5 4 6 } \\
& 0.000547
\end{aligned}
$$

$|\Delta y|=1.4-1.4121 \ldots \approx 0.0142$
Relative Fwd.enor: $\frac{|\Delta y|}{|y|} \approx 0.01$
(accurate slyniticoml)digits)

$$
\frac{1}{1.4}
$$

Forward/Backward Error: Example
$\begin{aligned} & \text { Suppose you wanted } y=\sqrt{2} \text { and got } \hat{y}=1.4 . \\ & \text { What's the (magnitude of) the backward error? }\end{aligned} \quad f(x)=\sqrt{x}$

$$
\begin{gathered}
\hat{x} \text { so that } f(\hat{x})=1.4 \\
\hat{x} \approx 1.96
\end{gathered}
$$

Backward error:

$$
\begin{aligned}
& \frac{|\Delta x|}{|x|} \approx 0.02
\end{aligned}
$$

Forward/Backward Error: Observations

What do you observe about the relative manitude of the relative errors?
backward? forward reality is not always, that nice

Sensitivity and Conditioning
What can we say about amplification of error?

$$
\frac{|y-\hat{y}|}{|y|} \leq k_{\text {vel }} \cdot \frac{|x-\hat{\imath}|}{|x|}
$$

Example: Condition Number of Evaluating a Function $y=f(x)$. Assume f differentiable.

$$
\begin{gathered}
k=\max _{x \cdot \Delta x} \frac{|\Delta y| /|y|}{|\Delta x| /|x|} \\
\Delta y=f(x+\Delta x)-f(x) \approx \rho^{\prime}|x| \cdot \Delta x \\
k \geqslant \frac{|\Delta y| /|y|}{|\Delta x| /|x|} \approx \frac{\left|f^{\prime}(x)\right||\Delta x| / f(f) \mid}{|\Delta x| /|x|}=\frac{\left|x \cdot f^{\prime}(x)\right|}{|f(x)| \mid}
\end{gathered}
$$

Demo: Conditioning of Evaluating tan [cleared]

$$
\begin{aligned}
f(x+\Delta x) & \approx f(x) \\
& \approx f(x)+\Delta x \cdot f^{\prime}(x)
\end{aligned}
$$

Stability and Accuracy

Previously: Considered problems or questions.
Next: Considered methods, i.e. computational approaches to find solutions.
When is a method accurate?

When is a method stable?
\square

