Stability and Accuracy
Previously: Considered problems or questions.
Next: Considered methods, ie. computational approaches to find solutions. When is a method accurate?

Closeness of the method output to theme answer
When is a method stable?

- A method is stable if it produces the every answer to a "nearby problem
¿ "bach wand ot ability h strides than the simple requiemat Sensitivity ${ }^{5}$ the nom var ant hon in input is no (or not much) greater that the conditioning of the undolying pubs.

Getting into Trouble with Accuracy and Stability
bitty / c5450-F22

How can I produce inaccurate results?

- apply a method 1 that's in accurate
- try to compare something ill-condilioned
- try to compute something well-conditioned bul use an unstable method.

In-Class Activity: Forward/Backward Error

In-class activity: Forward/Backward Error

Wanted: Real Numbers. . . in a computer Computers can represent integers, using bits:

$$
23=1 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=(10111)_{2}
$$

How would we represent fractions?

$$
\begin{aligned}
23.625= & \cdots \cdot+1 \cdot 2^{0} \\
& =\frac{1 \cdot 2^{-1}+0 \cdot 2^{-2}+1.2^{-3}}{3} \text { refined pant }
\end{aligned}
$$

Fixed-Point Numbers
Suppose we use units of 64 bits, with 32 bits for exponents $\geqslant 0$ and 32 bits for exponents <0. What numbers can we represent?

How many 'digits' of relative accuracy' (think relative rounding error) are available for the smallest vs. the largest number?
rel.errou of $2^{-G Y}$: abour 19 digits
For smallest:

Floating Point Numbers

$$
A: 0000000
$$

Convert $13=(1101)_{2}$ into floating point representation.

$$
(1.101) \cdot 2^{3}
$$

What pieces do you need to store an FP number?

$$
\text { significant: }(1.101)_{L}
$$

exponat ; 3

$$
4.35 \cdot 10^{10}
$$

$$
\frac{1}{\hat{\imath}_{\text {significand }}}
$$

Floating Point: Implementation, Normalization
Previously: Consider mathematical view of FP. (via example: $(1.101)_{2}$)
Next: Consider implementation of FP in hardware.
Do you notice a source of inefficiency in our number representation?

Unrepresentable numbers?
Can you think of a somewhat central number that we cannot represent as

$$
x=(1 .
$$

Zeno is not yet represubable
If shored exponent it pattern is 000 moon, furn off the leading ore"
. and do what with the expowal?

Demo: Picking apart a floating point number [cleared]

Subnormal Numbers

What is the smallest representable number in an FP system with 4 stored bits in the significand and a stored exponent range of $[-7,8]$?

