$$
A \vec{x} \cong \vec{b}
$$

$$
A^{\top} A \vec{x}=A^{\top} b
$$

$$
\begin{aligned}
\vec{x} & =\underbrace{\left(A^{\top} A\right)^{-1} A^{\top} b}_{A^{\top}} \\
A \vec{x} & =P D \\
\Rightarrow & P=A\left(A^{\top} A\right)^{-1} A^{\top} \\
& L P^{2}=P \\
& P^{\top}=P
\end{aligned}
$$

Pseudoinverse

What is the pseudoinverse of A ?

$$
P=A A^{+} \quad A^{+}=\left(A^{\top} A\right)^{-1} A^{\top}
$$

What can we say about the condition number in the case of a (cour.) tall-and-skinny, full-rank matrix? \rightarrow not Full $^{\mathrm{kmh}:}$
$k(A)=\infty$

$$
K(A)=\|A\|\left\|A^{+}\right\| \quad \rightarrow \text { same in square case }
$$

What does all this have to do with solving least squares problems?

$$
\begin{aligned}
& x \\
& x=A^{+} b
\end{aligned}
$$

Sensitivity and Conditioning of Least Squares

Relate $\|A \boldsymbol{x}\|$ and $\mid(\boldsymbol{b} \mid$ with $\$ \theta$ via trig functions.

$$
\cos \theta=\frac{\|A+\|_{2}}{\|b\|_{2}}
$$

Sensitivity and Conditioning of Least Squares (II)
Derive a conditioning bound for the least squares problem.

$$
\frac{\|\Delta x\|}{\|x\|} \leqslant k(A) \cdot \frac{1}{\cos \theta} \cdot \frac{\|\Delta b\|}{\|b\|}
$$

Sensitivity and Conditioning of Least Squares (III)
Any comments regarding dependencies?
Here: condition in y of LSQ de cards on b?
What about changes in the matrix?

$$
\frac{\|\Delta x\|}{\|x\|} \leq\left[\operatorname{cond}(A)+\operatorname{cond}(\theta)^{2} \cdot \tan (\theta)\right] \frac{\|\Delta A\|}{\|A\|}
$$

Recap: Orthogonal Matrices

What's an orthogonal (=orthonormal) matrix?
One that satisfies $Q^{T} Q=I$ and $Q Q^{T}=I$.
How do orthogonal matrices interact with the 2-norm?

$$
\|Q \boldsymbol{v}\|_{2}^{2}=(Q \boldsymbol{v})^{T}(Q \boldsymbol{v})=\boldsymbol{v}^{T} Q^{T} Q \boldsymbol{v}=\boldsymbol{v}^{T} \boldsymbol{v}=\|\boldsymbol{v}\|_{2}^{2} .
$$

Transforming Least Squares to Upper Triangular .

Suppose we have $A=Q R$, with Q square and orthogonal, and R upper triangular. This is called a $Q R$ factorization.
How do we transform the least squares problem $A \boldsymbol{x} \cong \boldsymbol{b}$ to one with an upper triangular matrix?

$$
\begin{aligned}
& \left\|A_{x}-\overrightarrow{\|}\right\|^{2} \\
= & \left\|O^{\top}(Q R \dot{x}-b)\right\|_{2} \\
= & \left\|R x-Q^{+} b\right\|_{2}=\| \|^{R}-Q^{\top} b \|_{2} \\
& \left\|^{n}=m\right\|^{m}\left\|^{n}\right\|^{n}{ }^{n} f_{n} \|^{n}
\end{aligned}
$$

Simpler Problems: Triangular
What do we win from transforming a least-squares system to upper triangular form?

$$
\binom{R_{\text {top }}}{0} \vec{x} \cong\binom{\left(Q^{\ulcorner } \vec{b}\right)_{\text {top }}}{\left(Q^{r} b\right)_{\text {bolton }}}
$$

How would we minimize the residual norm?

$$
\begin{aligned}
& \|r\|_{2}^{2}=\left\|\left(Q^{\top} b\right)_{\text {top }}-R_{\text {top }} \vec{x}\right\|_{2}^{2}+\left\|\left(Q^{\top} b\right)_{\text {batten }}\right\|_{2}^{2} \\
& \vec{x}=R_{\text {top }}^{-1}\left(O^{\top} b\right)_{\text {top }} \\
& \Rightarrow T_{1}=0 \quad \Rightarrow\|r\|_{2}^{2}=T L
\end{aligned}
$$

Computing QR

- Gram-Schmidt
- Householder Reflectors
- Givens Rotations

Demo: Gram-Schmidt-The Movie [cleared]
Demo: Gram-Schmidt and Modified Gram-Schmidt [cleared]
Demo: Keeping track of coefficients in Gram-Schmidt [cleared]
Seen: Even modified Gram-Schmidt still unsatisfactory in finite precision arithmetic because of roundoff.

NOTE: Textbook makes further modification to 'modified' Gram-Schmidt:

- Orthogonalize subsequent rather than preceding vectors.
- Numerically: no difference, but sometimes algorithmically helpful.

Economical/Reduced QR
\rightarrow Fill
Is $Q R$ with square Q for $A \in \mathbb{R}^{m \times n}$ with $m>n$ efficient?

In-Class Activity: QR

In-class activity: QR

$0 \cdot 6$

Householder Transformations

Find an orthogonal matrix Q to zero out the lower part of a vector \boldsymbol{a}.

