- Examlel 2: Uod - Fri \rightarrow material throogh $9 / 22$ includes $Q R_{1}$ LSQ, Gram-Schmidl
- HUF
$\Leftrightarrow\|A x-b\|+\left\|M_{x}\right\|$ regulaniation

$$
\begin{aligned}
& A x \cong b \quad \leadsto A=U \sum V^{\top} \\
& \|A x-b\|=\left\|u \varepsilon V^{\top} x \cdot b\right\|
\end{aligned}
$$

$\Leftrightarrow R Q$ factorinatin

$$
\begin{aligned}
& \angle, G Q R \\
& \angle C C S Q
\end{aligned}
$$

Householder Transformations

Find an orthogonal matrix Q to zero out the lower part of a vector a.

Householder Reflectors: Properties

Seen from picture (and easy to see with algebra):

$$
H \boldsymbol{a}= \pm\|\boldsymbol{a}\|_{2} \boldsymbol{e}_{1} .
$$

Remarks:

- Q: What if we want to zero out only the $i+1$ th through nth entry? A: Use \boldsymbol{e}_{i} above.
- A product $H_{n} \cdots H_{1} A=R$ of Householders makes it easy (and quite efficient!) to build a QR factorization.
- It turns out $\boldsymbol{v}^{\prime}=\boldsymbol{a}+\|\boldsymbol{a}\|_{2} \boldsymbol{e}_{1}$ works out, too-just pick whichever one causes less cancellation.
- H is symmetric
- H is orthogonal

Demo: 3×3 Householder demo [cleared]

$$
\begin{aligned}
& U= \\
& \text { red] }
\end{aligned}
$$

$$
\begin{aligned}
& H \vec{a}=(I-\left.2 \frac{v v^{\top}}{v^{\top} v}\right) a \\
& \hat{C} O(n) \text { per colun } \\
& \rightarrow H A(T T \\
& v^{\top} v \\
& \rightarrow O\left(n^{2}\right)
\end{aligned}
$$

Givens Rotations

If reflections work, can we make rotations work, too?

$$
\begin{aligned}
{\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] } & =\left[\begin{array}{c}
\|a\| \\
0
\end{array}\right] \\
c=a_{1} /\|a\| & s=a_{L} /\|a\|
\end{aligned}
$$

Demo: 3×3 Givens demo [cleared]
For QR

Rank-Deficient Matrices and QR \longrightarrow approximathly
What happens with $Q R$ for rank-deficient matrices?

$$
\begin{aligned}
& A P=Q R \\
& \left.A P=Q\left({ }^{\text {big }} \text { smolfa }\right) \downarrow d\right) \\
& \text { sminelys }
\end{aligned}
$$

"piroted'QR, rank-reveuling OL

Rank-Deficient Matrices and Least-Squares
What happens with Least Squares for rank-deficient matrices?

$$
A x \cong \boldsymbol{b}
$$

G or shart/fat

- QR finds a solution with min imal $\| A x-b / l$.
- Bul : not unglue, $x+n$ with $n \in N(A)$ is just as good.
- Wish: additional condi also minimize $\|\lambda\|_{c}$ $G_{\text {G use the SUD. }}$

SVD: What's this thing good for? (I)

$$
A=u \varepsilon v^{+}
$$

SVD: What's this thing good for? (II)

- Low-rank Approximation

Theorem (Eckart-Young-Mirsky)
If $k<r=\operatorname{rank}(A)$ and

$$
A=U\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \\
& & \sigma_{n}
\end{array}\right]+
$$

$$
\begin{gathered}
A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}, \quad \text { then } \\
\min _{\operatorname{rank}(B)=k}\|A-B\|_{2}=\left\|A-A_{k}\right\|_{2}=\sigma_{k+1} \\
\min _{\operatorname{rank}(B)=k}\|A-B\|_{F}=\left\|A-A_{k}\right\|_{F}=\sqrt{\sum_{j=k}^{n} \sigma_{j}^{2}}
\end{gathered}
$$

Demo: Image compression [cleared]

SVD: What's this thing good for? (III)

- The minimum norm solution to $A \boldsymbol{x} \cong \boldsymbol{b}$:

