- Site looks broken? Shift + click treload? - Exculeb 2 grades out - Eigenvalue problems $A \times = \times \Lambda$ - Sensitivity bound: $A \times = \lambda \times (A+E) \times = \mu \times$ $\max_{k} | p^{-k} \operatorname{closest} \lambda_k^{k} | \leq \operatorname{cond}(X) \cdot | | \in | |$ A symm. \Rightarrow \times orthogonal \Rightarrow cond₁ (x) = 1 - Operations

A Colore some A Seigner some A-OI Seigner some

Power Iteration

Demo: Motivating Power Iteration [cleared]

Assume $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$ with eigenvectors $\underline{\mathbf{x}_1, \ldots, \mathbf{x}_n}$. Further assume $||\mathbf{x}_i|| = 1$.

Msa random victor:
$$y_{\overline{6}} \propto x_{1} + \beta x_{1}$$

$$y_{1000} = A^{1000} y_{\overline{6}} = \alpha \lambda_{1}^{1000} x_{1} + \beta \lambda_{1}^{1000} x_{2}$$

$$\frac{y_{1000}}{\lambda_{1}^{1000}} = A^{1000} y_{\overline{6}} = \alpha \lambda_{1}^{1000} x_{1} + \beta \lambda_{1}^{1000} x_{2}$$

$$\frac{\lambda_{1000}}{\lambda_{1}^{1000}} = A^{1000} y_{\overline{6}} = \alpha \lambda_{1}^{1000} x_{1} + \beta \lambda_{1}^{1000} x_{2}$$

$$\frac{\lambda_{1000}}{\lambda_{1}^{1000}} = A^{1000} y_{\overline{6}} = \alpha \lambda_{1}^{1000} x_{1} + \beta \lambda_{1}^{1000} x_{2}$$

$$\frac{\lambda_{1000}}{\lambda_{1}^{1000}} = A^{1000} y_{\overline{6}} = \alpha \lambda_{1}^{1000} x_{1} + \beta \lambda_{1}^{1000} x_{2}$$

Power Iteration: Issues?

What could go wrong with Power Iteration?

•
$$|\lambda_1| = |\lambda_1|$$
 ? (in cludos multiplicition)
• Overflow \rightarrow normalized power ilenation?
• $|\lambda_2| \propto |\lambda_1| \Rightarrow$ conv. Factor $|\frac{\lambda_1}{\lambda_1}| \approx 1$
 \Rightarrow need lots of ilenations

· only got the first one actual problem is exact with.

· what If
$$\alpha = 0$$
? Smuglo Old ul/ rounding?

What about Eigenvalues?

$$(A \times)$$
 = λ

Power Iteration generates eigenvectors. What if we would like to know eigenvalues?

Convergence of Power Iteration

What can you say about the convergence of the power method?

Say $\mathbf{v}_1^{(k)}$ is the kth estimate of the eigenvector \mathbf{x}_1 , and

Shift - invent

Inverse Iteration

Describe inverse iteration.

$$\frac{\lambda_{n+1}^{n}}{\lambda_{n+1}^{n}} = \left(A - \sigma \right)^{-1} \times \alpha$$

$$e_{u+1} \approx \frac{\lambda_{\text{closest for } \sigma} - \sigma}{\lambda_{\text{seable for } \sigma}} e_{u}$$

Rayleigh Quotient Iteration

Demo: Power Iteration and its Variants [cleared]

In-Class Activity: Eigenvalues

In-class activity: Eigenvalues