- Site looks brokan? Shift + click"reload".
- Excurlel 2 grades oal

Review:

- Eigaralue problems $A \stackrel{d}{x}=x \Lambda^{\text {diag }\left(\lambda_{1} \cdots, \lambda_{1}\right)}$
- Sensitivity bound: $A x=\lambda x \quad(A+E) x=\mu x$ $\max _{\mu} \mid \mu-$ 'dosesh $\lambda_{k}^{n} \mid \leq \operatorname{cond}(X) \cdot\|E\|$
A symm. $\Rightarrow X$ orthogoned \Rightarrow cond $_{2}(x)=1$
- Operation

$$
\begin{aligned}
& \text { Operahmi } \\
& \cdot A^{k} \xrightarrow{-1} \lambda_{\text {ei }}
\end{aligned}
$$

Power Iteration
Demo: Motivating Power Iteration [cleared]
Assume $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|$ with eigenvectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$.
Further assume $\left\|\boldsymbol{x}_{i}\right\|=1$.
Use ran 1 om vector: $\vec{y}_{\bar{\sigma}} \alpha \vec{x}_{1}+\beta \vec{x}_{2}$

$$
\begin{aligned}
& \vec{y}_{1000}=A^{1000} \vec{y}_{0}=\alpha \lambda_{1}^{1000} \vec{x}_{1}+\beta \lambda_{2}^{1000} \vec{x}_{1} \\
& \frac{\vec{y}_{1000}}{\lambda_{1}^{1000}}=\frac{A^{1000} \vec{y}_{0}=\alpha}{\lambda_{1}^{1000}}=\frac{\lambda^{1000} \vec{x}_{1}+}{\lambda_{1}^{1000}} \underbrace{\frac{\lambda_{1}^{1000} \vec{x}_{2}}{\underbrace{\lambda_{1}^{1000}}_{\left.1 \cdot \frac{\lambda_{2}}{\lambda_{1}}\right)^{1000}}}}_{1}
\end{aligned}
$$

Power Iteration: Issues?

What could go wrong with Power Iteration?

- $\left|\lambda_{2}\right|=\left|\lambda_{1}\right|$? (in cludos multipllititia)
- Overflow \rightarrow "nor malice power iteration"
- $\left|\lambda_{2}\right| \approx\left|\lambda_{1}\right| \Rightarrow$ conc. Factor $\left|\frac{\lambda_{1}}{\lambda_{1}}\right| \approx 1$
\Rightarrow hied lots of iterations
- only get the first one
- what if $\alpha=0$? ached problem is exact grith.
- λ complex?

What about Eigenvalues?

$$
\frac{(A x)_{1}}{x_{1}}=\lambda
$$

Power Iteration generates eigenvectors. What if we would like to know eigenvalues?

$$
\begin{aligned}
& \frac{x^{T} A \vec{x}}{x^{T} \vec{x}} \quad \text { "Rayleigh quotimal" } \\
& A_{x}=\lambda \vec{x} \quad \Rightarrow \quad C=\lambda
\end{aligned}
$$

Convergence of Power Iteration
What can you say about the convergence of the power method?
Say $\boldsymbol{v}_{1}^{(k)}$ is the k th estimate of the eigenvector \boldsymbol{x}_{1}, and

$$
e_{k}=\left\|x_{1}-v_{1}^{(k)}\right\| . \rightarrow v_{1}^{(k+1)} A v_{1}^{(k)}
$$

$$
\begin{aligned}
& e_{n+1} \approx\left|\frac{\lambda_{2}}{\lambda_{1}}\right| e_{n} \\
& \tau \text { linearly convergat } \\
& \lambda_{n} \frac{1 \quad 1}{0} 0_{0} 11 \quad 0 \\
& \lambda_{n}-\sigma \xrightarrow[0]{1} 1 \quad 11 \\
& \text { (quad radically four } \\
& e_{k+1} \approx c \cdot\left(e_{n}^{2}\right)
\end{aligned}
$$

Inverse Iteration

$$
\text { shifted; } \quad\left|\frac{\lambda_{2}^{\prime}-\sigma}{\lambda_{1}^{\prime}-\sigma}\right|
$$

Rayleigh Quotient Iteration

Demo: Power Iteration and its Variants [cleared]

In-Class Activity: Eigenvalues

In-class activity: Eigenvalues

