Review \& Outline for today

$$
\begin{array}{lll}
A= & X D X^{-1} R \text { invertible } X & A X=X D \\
& \\
& & \square x \\
\text { diagonal } & x
\end{array}
$$

similarity transformation $\square \square=\|$
$B=U A U^{-1} \Rightarrow A$ and B have same erzvals

$$
B=X D X^{-1}
$$

egress of A will be $u^{-1} x \quad A U^{-1} x=U^{-1} X D$

$$
A=U^{-1} B u=\underline{U^{-1} \times D X^{-1} U}
$$

 bypes of reductions

Als:

Alt:
don't Lrmistorm A drecth, ody apis A (gaod if A is sparse
or if A is an operatro)

Ornugual o $Q R$ itrestem

OI:

$$
\begin{aligned}
& I: \\
& X_{0}: i n p-t \quad X_{0} \in \mathbb{R}^{n+b} \\
& \text { for } i=0 \text { to comerence }
\end{aligned}
$$

for $i=0$ to comererce

$$
\begin{aligned}
& Y_{i}=A X_{i} \\
& X_{i+1} R=Y_{i} \leqslant \text { wathguaber }
\end{aligned}
$$

converes to span \{lount t egrea of $A\}$

QR itration
OI w.th $n=k$
coupuong OI is equiv. to

$$
\begin{aligned}
& A X_{k}=Q_{k} R_{k} \\
& Q_{k}=\hat{Q}_{k} \cdots \hat{Q}_{0} \\
& A_{i}=\overbrace{k}^{+} A Q_{k} \\
& \hat{Q}_{b} \ldots \hat{Q}_{1}
\end{aligned}
$$

for : cuntil conc.

$$
\begin{aligned}
& \hat{Q}_{i} R_{:}=A: \\
& A_{:+1}=R_{i} \hat{Q}:
\end{aligned}
$$

QR Iteration: Incorporating a Shift
How can we accelerate convergence of QR iteration using shifts?

$$
\begin{aligned}
Q_{k} R_{k} & =A_{k}-\sigma_{k} I \\
A_{k+1} & =R_{k} Q_{k}+\sigma_{k} I
\end{aligned}
$$

$$
\text { if } A_{6}=\nabla \Rightarrow S_{\substack{ \\S_{\text {mar }}}}
$$

$$
\begin{aligned}
& Q_{u} R_{r}=\nabla \quad A_{t} \in G_{r}^{\top} A_{r} Q_{r}
\end{aligned}
$$

δ_{6} can be doreen as last entry $A_{s}[n-1, n-1]$ until lat ashur concern

Fo hared on erguah of $A_{<}[n-2: n, n-2: n]$

$$
\begin{aligned}
& \text { the } A_{4} \text { and } A_{L+1} \text { th simitar? } \\
& Q_{v} R_{v}=A_{s}-\sigma_{s} J \Rightarrow R_{s} G_{x}=G_{6}^{+}\left(A_{t}-\sigma_{t} I\right) Q_{k} \\
& \left.A_{t+5}-\delta_{s}\right]^{-}=R_{k} Q_{k}
\end{aligned}
$$

QR Iteration: Computational Expense
A full QR factorization at each iteration costs $O\left(n^{3}\right)$-can we make that cheaper?

Demo: Householder Similarity Transforms [cleared]

Weper - Messenkerg reduchun

Q

$A_{0}=A$
for $i=0$ to $n-1$

overd $O\left(n^{3}\right)$

$$
\begin{array}{ll}
A_{0} \text { is } u-H & U-H+\lambda=U-H \\
\nabla \nabla \nabla & U-H \\
B_{0} R_{0}=A & G_{0}=A \cdot R^{-1}=\nabla \\
A_{1}=R_{0} Q_{0} & \forall \nabla
\end{array}
$$

QR/Hessenberg: Overall procedure

Overall procedure:

1. Reduce matrix to Hessenberg form
2. Apply QR iteration using Givens QR to obtain Schur form

Why does QR iteration stay in Hessenberg form?

What does this process look like for symmetric matrices?

Krylov space methods: Intro

What subspaces can we use to look for eigenvectors?
power iterator: $x_{6}=A x_{t-1}$
nice in that we only 'apr' A do vectas
how well car we do with $i s$ applicator of A

Krylov for Matrix Factorization
What matrix factorization is obtained through Krylov space methods?

$$
\begin{aligned}
& K_{n}=n \\
& K_{n}=\left[\begin{array}{llll}
x_{0} & A x_{0} & \ldots & A^{n-1} x_{0}
\end{array}\right] \\
& K_{n}^{-1} A K_{n}=\left[\begin{array}{lll}
A_{x_{0}} & \cdots A^{-1} x_{0} & A^{n} \\
x_{0}
\end{array}\right]
\end{aligned}
$$

Conditioning in Krylov Space Methods/Arnoldi Iteration (I)
What is a problem with Krylov space methods? How can we fix it?

$$
\begin{aligned}
& \text { columes of } k_{n} A_{x}^{n-2} \Lambda_{x}^{n-1} \text { becone liverly deperdut } \\
& k_{L} \in R^{n \times 6} \\
& \begin{array}{l}
\stackrel{R}{L}=\left[\begin{array}{lll}
x A x & \ldots & A^{k-1} x
\end{array}\right] \\
\square \\
\square
\end{array} \\
& \operatorname{spar}\left(\overline{Q_{k}}\right)=\operatorname{sean}\left(t_{*}\right)=S_{k}
\end{aligned}
$$

Conditioning in Krylov Space Methods/Arnoldi Iteration (II)

$$
\begin{aligned}
& Q_{4}^{\top} A Q_{k}=H_{k} \\
& A Q_{n}=Q_{n} H_{n} \\
& Q_{n}=\left[\begin{array}{lll}
q_{1} & \cdots & q_{n}
\end{array}\right] \\
& A\left[1 \left\|\|^{G_{n}}=M_{n}^{G_{n}} M_{n}^{H_{n}}\right.\right. \\
& A_{q k}=\underline{h}_{1 k} q_{1}+h_{26} q_{2}+\ldots \underline{h_{k+1}, 6} \underbrace{q k+1} \\
& \text { haver deforiond } q_{1} \cdots q_{k} \text {, wee con ford } q_{6+1} \\
& H_{i i}=a_{i}^{T} A_{j}
\end{aligned}
$$

Demo: Arnold Iteration [cleared] (Part 1)

