- Examplet 3

$$
-Q_{\text {nif }} 16 \rightarrow E C
$$

$$
\begin{aligned}
& Q_{u} n_{w}=X_{u}-O I \\
& X_{u+1}=R_{u} Q_{u}+O I
\end{aligned}
$$

$$
\begin{aligned}
& S_{k}=\operatorname{spm}\left(\vec{x}_{0}, A \vec{x}_{0}, A_{\overrightarrow{x_{0}}}^{2} \cdots, A_{x_{0}}^{k}\right) \\
& \left(A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{h}\right. \\
& , A I_{S_{k}} ; S_{n} \rightarrow S_{k}
\end{aligned}
$$



Conditioning in Krylov Space Methods/Arnoldi Iteration (II)

$$
Q_{n}^{\top} A Q_{n}=+1
$$

$\rightarrow$ assumes the role of reduction to upper Hessenberg
(From Honsctioldo similarity
from store)

Demo: Arnoldi Iteration [cleared] (Part 1)

Krylov: What about eigenvalues?
How can we use Arnoldi/Lanczos to compute eigenvalues?

$$
\begin{aligned}
& Q=Q_{n}=\left[\begin{array}{l:l}
Q_{k} & U_{k}
\end{array}\right] \\
& \square_{\text {known }} \mathrm{C}_{\text {unknown }}
\end{aligned}
$$

Demo: Arnoldi Iteration [cleared] (Part 2)

Computing the SVD (Kiddy Version)

$$
A=U \Sigma r^{\top}
$$

1. Comppente eigonvalues /eigen vectors of $A^{\top} A$ :

Visoth becouse

$$
A^{\top} A V=V D
$$

$$
V^{\top} A^{\top} A V-D=\left(\overline{C_{2}^{2}}\right.
$$

 2.
$u \varepsilon=A v$
If $\varepsilon$ is insertiblei $\quad U=A V \varepsilon^{-1}$

$$
u^{\top} u=\varepsilon^{-1} U^{\top} A^{+} A V \varepsilon^{-1}=\Sigma^{-1} \varepsilon^{2} \varepsilon^{-1}=I
$$

Demo: Computing the SVD [cleared]
"Actual"/"non-kiddy" computation of the SVD: $B=$


Bidiagonalize $A=U\left[\begin{array}{l}B \\ 0\end{array}\right] \widetilde{V^{T}}$, then diagonalize via variant of QR . References: Chan '82 or Golub/van Loan Sec 8.6.

## Outline

Introduction to Scientific Computing
Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations
Introduction
Iterative Procedures
Methods in One Dimension
Methods in $n$ Dimensions ("Systems of Equations")

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Solving Nonlinear Equations

What is the goal here?

$$
f^{\prime} \cdot R^{\wedge} \rightarrow \pi^{n}
$$

Solve for $\vec{f}(\vec{x})=\overrightarrow{0}$

$$
\begin{aligned}
& \text { "WCOG" RHS is zen, } \\
& \text { if not, absorb } 6 \text { in lo }
\end{aligned}
$$



## Showing Existence

How can we show existence of a root?


