- Example 2 - HW8

Solving Nonlinear Equations

What is the goal here?

Showing Existence

How can we show existence of a root?

Sensitivity and Multiplicity

als cond of evoluting fi

uell- cont

What is the sensitivity/conditioning of root finding?

What are multiple roots?

Example:
$$\int |x| = (x - x_R)^2 \cdot \overline{p}(x)$$

Del: $\overline{p}(x^*) = 0$

multipliable:

How do multiple roots interact with conditioning?

inverse is steen, therefore conditioning is poor

Rates of Convergence

What is *linear convergence*? *quadratic convergence*?

vitat is imedi convergence. quadratic convergence.				
$\tilde{e}_n = \hat{u}_n - \tilde{u}$ An iter other method converges	iteration if the answer			
An iter whice method converges with rate vift	L'			
r=1: Xiveur conv	Problems carbon defi llent//= (
r>1: superlinen	ent & C. (ent			

164

About Convergence Rates

Demo: Rates of Convergence [cleared]

Characterize linear, quadratic convergence in terms of the 'number of accurate digits'.

Linear: gains fixed number of disits
perit. Qual rate: doubles umber of digits.

Stopping Criteria

Comment on the 'foolproof-ness' of these stopping criteria:

- 1. $|f(x)| < \varepsilon$ ('residual is small')
- 2. $\|\mathbf{x}_{k+1} \mathbf{x}_k\| < \varepsilon$
- 3. $\|\mathbf{x}_{k+1} \mathbf{x}_k\| / \|\mathbf{x}_k\| < \varepsilon$

Bisection Method

Demo: Bisection Method [cleared]

What's the rate of convergence? What's the constant?

Fixed Point Iteration

$$x_0 = \langle \text{starting guess} \rangle$$

 $x_{k+1} = g(x_k)$

Demo: Fixed point iteration [cleared]

When does fixed point iteration converge? Assume g is smooth.

Let
$$x^*$$
 be the fixed pt , with $g(x)=x^*$

If $|g'(x^*)| < 1$, then there expts a neighborhood whose we have convergence.

 $e_{u+1} = x_{u+1} - x^* = g(x_u) - g(x^*)$

Fixed Point Iteration: Convergence cont'd.

Error in FPI: $e_{k+1} = x_{k+1} - x^* = g(x_k) - g(x^*)$

$$e_{col} = g(x_{k}) - g(x') = g'(\theta_{k})(x_{k} - x^{*}) = g'(\theta_{k}) e_{k}$$

$$\exists g'(\theta_{k})(x_{k} - x^{*}) = g'(\theta_{k}) e_{k}$$

$$\exists g'(x') = 0?$$

$$\exists g'(x'') = 0?$$

$$\exists g'(x'') = 0?$$

$$\exists g'(x'') = 0?$$

$$\exists g'(\theta_{k}) = 0.$$

$$\exists g'(\theta_{k}) =$$

Newton's Method

Derive Newton's method.

$$\begin{cases}
\left(x_{u} + h\right) \approx \left(\left(x_{u}\right) + \left(\frac{1}{2}(x_{u}) h\right) + \left(\frac{1}{2}(x_{u}) h\right) \\
\left(x_{u}\right) + \left(\frac{1}{2}(x_{u}) h\right) \\
\left(x_{u}\right$$

Demo: Newton's method [cleared]

Convergence and Properties of Newton

What's the rate	of convergence of N	lewton's metho	od?	
Drawbacks of N	ewton?			

Demo: Convergence of Newton's Method [cleared]