$$
\begin{aligned}
& \text { - Examlel } 3 \\
& \text { - HW8 }
\end{aligned}
$$

Solving Nonlinear Equations

What is the goal here?

$$
\begin{aligned}
& f(\vec{x})=\overrightarrow{0} \\
& G \mid 0 \text { case: } \quad f(x)=0
\end{aligned}
$$

Showing Existence
How can we show existence of a root?

- Intermediak value theorem: 0-. continuous,
- Inverse functor theorem: $]_{f}^{D}$ invertible at some point $\in \mathbb{M}^{2}$ Want: $f^{-1}(\overrightarrow{0})=\xrightarrow{?} \stackrel{Q_{0}}{\rightarrow}$
\Rightarrow there exists sro so that Fir invertible on $B(x, y)$
- Contraction mappi"j theorem
$g|f|=f(x)+x \quad$ A function g i $\mathbb{M}^{n} \xrightarrow{V} \mathbb{R}^{\prime}$ is called contractive if there exirs $\theta<j<1$ so that $\|g(x)-y(y)\| \leq \gamma\|x-y\|$. On a closed set $S \subseteq \mathbb{) ^ { L }}$ with $g(S) \subseteq S$ then exists a flied point $x^{*}: f\left(x^{*}\right)=x^{*}$.

Sensitivity and Multiplicity
abs cold of evduating f_{1}
What is the sensitivity/conditioning of root finding?

How do multiple roots interact with condiditioning?
inverse is steep, therefore conditioning is poor

Rates of Convergence
What is linear convergence? quadratic convergence?

$$
\vec{e}_{n}=\overrightarrow{\vec{u}}_{n}-\vec{u} \quad \overrightarrow{\vec{u}}_{h} \text { : you at Leith }
$$

An item alive method converges with rake r iff
\vec{u} : true answer $\stackrel{\rightharpoonup}{e}_{n}$; error

$$
\lim _{k \rightarrow \infty} \frac{\left\|e_{h+1}^{\infty}\right\|}{\left\|\vec{e}_{h}\right\|^{r}}=C>0
$$

$r=1$: lina er cons
$r=21$ quadratic
$r \geqslant 1$ Superliner

$$
\left\|e_{k+1}\right\| \varepsilon c \cdot\left\|\vec{e}_{k}\right\|
$$

$$
\left\|e_{n}+\right\| \leq \subset \|_{e_{a} \|^{2}}
$$

About Convergence Rates
Demo: Rates of Convergence [cleared] Characterize linear, quadratic convergence in terms of the 'number of accurate digits'.

Linear: gains fixed unober of digits pert.

Quad ante: doubles number of dig's.

Stopping Criteria
Comment on the 'foolproof-ness' of these stopping criteria:

1. $|f(x)|<\varepsilon \quad$ ('residual is small')
2. $\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right\|<\varepsilon$
3. $\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right\| /\left\|\boldsymbol{x}_{k}\right\|<\varepsilon$

I

2. Method gets stuck \Rightarrow fail
 rel aecmacy of rooks with diffs magnitude C nat foe
3. Goes land if $\left\|\vec{x}_{n}\right\|$ is small Sane:

Bisection Method

Demo: Bisection Method [cleared]
What's the rate of convergence? What's the constant?
hincw

Fixed Point Iteration

$$
\begin{aligned}
x_{0} & =\langle\text { starting guess }\rangle \\
x_{k+1} & =g\left(x_{k}\right)
\end{aligned}
$$

Demo: Fixed point iteration [cleared]
When does fixed point iteration converge? Assume g is smooth.
Let x^{*} be the fixed ph, with $g\left(x^{\prime}\right)=x^{h}$ It $\left|g^{\prime}\left(x^{*}\right)\right|<1$, then there exist 3 a neigh borhood where we have convergence.

$$
e_{k+1}=x_{k+1}-x^{*}=g\left(x_{k}\right)-g\left(x^{*}\right)
$$

Fixed Point Iteration: Convergence cont'd.
Error in FPI: $e_{k+1}=x_{k+1}-x^{*}=g\left(x_{k}\right)-g\left(x^{*}\right)$

Newton's Method
Derive Newton's method.

Solve $\quad f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right) h=0$ for h.

$$
\begin{aligned}
& U_{s c} \quad x_{k+1}=x_{k}+L . \\
& x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}=g\left(x_{k}\right)
\end{aligned}
$$

Demo: Newton's method [cleared]

Convergence and Properties of Newton

What's the rate of convergence of Newton's method?

Drawbacks of Newton?

Demo: Convergence of Newton's Method [cleared]

