Constramed op timization

Wolfrarun optimal solution at (-0.476001, 0.0588321)

Scipy

Objectives today

1. Step from linear least-squares to a constraint
2. Identify the "dual form" of problem.
3. Indroduce Lagrange Multipliers λ obj. constraint $\nabla f \sim \nabla g$
4. Define conditions
 for a minimum.

$$
\begin{aligned}
& \|A x-b\|^{2} \rightarrow \hat{x} \\
& \rightarrow A^{\top} A x=A^{\top} b \\
& \rightarrow A^{\top}(b-A x)=0 \\
& \rightarrow A^{\top} r=0
\end{aligned}
$$

$$
\begin{aligned}
& A^{\top} A x=A^{\top} b \\
\rightarrow & \tilde{x}=\left(A^{\top} A\right)^{-1} A^{\top} b \\
\rightarrow & \text { S. } P b=\vec{A}\left(A^{\top} A\right)^{-1} A^{\top} b
\end{aligned}
$$

$$
\text { projects } \underline{b} \text { onto } \operatorname{col}(A)
$$

Things 1 to $\operatorname{col}(A)$?

$$
\left.\begin{array}{ll}
& {\left[\begin{array}{l}
- \\
- \\
a_{0} \\
- \\
a_{2} \\
\vdots
\end{array}\right]}
\end{array}\right] \underline{v}=0
$$

Another way ;
project \underline{b} onto $\operatorname{span}(A)^{\perp}$
or $N\left(A^{\top}\right)$

$$
\begin{gathered}
P: b \rightarrow \operatorname{col}(A) \\
P=A\left(A^{\top} A\right)^{-1} A^{\top} \\
(I-P)^{2}= \\
I^{2}-2 P+P^{2} \\
= \\
=I-2 P+P \\
=I-P
\end{gathered}
$$

Wart:

$$
\begin{aligned}
& r=b-A \hat{x} \\
& A^{+} r=0 \\
\rightarrow & r+A \hat{x}=b \\
& A^{\top} r \\
\rightarrow & {\left[\begin{array}{ll}
I & A \\
A^{+} & 0
\end{array}\right]\left[\begin{array}{l}
r \\
\hat{x}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right] }
\end{aligned}
$$

KKT system
Karush Kahn Tucker

Example
primal (P) $\quad \frac{1}{2}\|A x-b\|^{2} \rightarrow \hat{x}$
Lual (D) $\frac{1}{2}\|r-6\|^{2}$ under $A^{\top} r=0$

$$
A=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad b=\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

$$
\begin{aligned}
& \text { (P) } A^{\top} A=[5] A^{\top} b=[10] \\
& \overrightarrow{\hat{x}=[2]}\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right]-\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
& b-A \hat{x} \\
& b r \notin \hat{x}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { (D) } L=\frac{1}{2}\|r-b\|^{2}+\underset{\hat{r}}{\hat{i} \text { Lagrange }_{\text {agr }}} \underset{\text { malt. }}{\lambda}\left(A^{\top} r\right)
\end{array} \\
& \text { Set } \nabla_{r_{1}, r_{2}, \lambda} L=0 \\
& L=\frac{1}{2}\left(r_{1}-3\right)^{2} \\
& +\frac{1}{2}\left(r_{2}-4\right)^{2} \\
& +\lambda\left(2 r_{1}+r_{2}\right) \\
& \left.\begin{array}{l}
\frac{\partial L}{\partial r_{1}}=r_{1}-3+2 \lambda \\
\frac{\partial L}{\partial r_{2}}=r_{2}-4+\lambda \rightarrow\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
r_{1} \\
r_{2} \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
0
\end{array}\right] . r_{1} \\
0
\end{array}\right] \\
& \frac{\partial L}{\partial \lambda}=2 r_{1}+r_{2}
\end{aligned}
$$

Think about Energy

Hook's law: $\omega=c \cdot l_{\text {length }}$

$$
\text { Energy }=\frac{1}{2} c \cdot l^{2}=\frac{1}{2} \frac{\omega^{2}}{c}
$$

Goal: minimite

$$
\begin{aligned}
& \text { Goak. } \begin{array}{l}
E(w)=\frac{1}{2} \frac{w_{1}^{2}}{c_{1}^{2}}+\frac{1}{2} \frac{w_{2}^{2}}{c_{2}^{2}} \\
L=\frac{1}{2} \frac{w_{1}^{2}}{c_{1}}+\frac{1}{2} \frac{w_{2}^{2}}{c_{2}}-\lambda\left(w_{1}-w_{2}=f .\right. \\
\frac{\partial L}{\partial w_{1}}=\frac{w_{1}}{c_{1}}-\lambda \\
\left.\frac{\partial c_{1}}{\partial w_{2}}=\frac{w_{2}}{c_{2}}-c\right) \\
\frac{\partial L}{\partial \lambda}=-w_{1}+w_{2}+f \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2} \\
u
\end{array}\right]
\end{array} .
\end{aligned}
$$

Notize $\frac{1}{2} \omega_{1}^{2}+\frac{1}{2} \omega_{2}^{2}-\lambda \omega_{1}+\lambda \omega_{2}$

\rightarrow sadd/e

Generalize
n springs m constraints

$$
\begin{aligned}
& \underline{w}=\left(w_{1} \ldots w_{n}\right) \\
& A^{\top} \underline{w}=\frac{f}{m \times 1}
\end{aligned}
$$

minimize $E^{m \times 1}=\frac{1}{2} \omega^{+} C^{-1} \underline{w} C^{-1}=\left[^{\frac{1}{C_{1}}} \frac{1}{c_{2}}\right]$

$$
\left.\begin{array}{rl}
\rightarrow L(\underline{w}, \underline{\lambda}) & =\frac{1}{2} w^{+} C^{-1} \underline{w}-\underline{\lambda}^{\top}\left(A^{\top} \underline{w}-\underline{\rho}\right) \\
\frac{\partial L}{\partial \underline{w}} & =C^{-1} \underline{w}-A \underline{\lambda}=0 \\
\frac{\partial L}{\partial \underline{\lambda}} & =-A^{\top} w+f=0
\end{array}\right]\left[\begin{array}{cc}
C^{-1} & -A \\
-A^{+} & 0
\end{array}\right]
$$

How do we solve

$$
\left[\begin{array}{ll}
C^{-1} & A \\
A^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
W \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
b \\
f
\end{array}\right]
$$

$n+m \times n+m$
Suppose © \triangle is positive definite.
(2) A is full rank.
$\rightarrow A^{\top} \subset A$ is invertible

$$
\left(=\left[\begin{array}{cc}
I & 0 \\
A^{\top} C & I
\end{array}\right]\left[\begin{array}{cc}
A^{\top} C A & 0 \\
0 & -A^{\top} C A
\end{array}\right]\left[\begin{array}{cc}
I & C A \\
0 & I
\end{array}\right]\right.
$$

Example

$$
n=2 \quad m=1
$$

Minimize surface area of a cylinder with volume $V=1000$

$$
\begin{aligned}
& f(r, h)=2 \pi r h+2 \pi r^{2} \\
& g(r, h)=\pi r^{2} h-V=0
\end{aligned}
$$

Intuition
minimize $f(x, y)$
sit. $\quad g(x, y)=0$
View: walk along $g(y, y)=0$, where is $f(x, y)$ unimimized?

$$
\begin{aligned}
& N=\dot{d} \\
& \nabla f=\lambda \nabla g
\end{aligned}
$$

Ok, so $\nabla f=\lambda \nabla g$ for some λ and $g=0 \rightarrow \nabla_{\lambda}(f+\lambda g)=0$

$$
\rightarrow \quad \mathcal{L}(x, y, x)=f(x, y) \pm \lambda g(x, y)
$$

Constrained Optimization: Problem Setup

Want \boldsymbol{x}^{*} so that

$$
f\left(\boldsymbol{x}^{*}\right)=\min _{\boldsymbol{x}} f(\boldsymbol{x}) \text { subject to } \boldsymbol{g}(\boldsymbol{x})=0
$$

No inequality constraints just yet. This is equality-constrained optimization. Develop a (local) necessary condition for a minimum.

Necessary cond.: "no feasible descent possible". Assume $\boldsymbol{g}(\boldsymbol{x})=0$.
Recall unconstrained necessary condition, "no descent possible":

$$
\nabla f(x)=0
$$

Look for feasible descent directions from \boldsymbol{x}. (Necessary cond.: \nexists)
\boldsymbol{s} is a feasible direction at \boldsymbol{x} if

$$
\boldsymbol{x}+\alpha \boldsymbol{s} \quad \text { feasible for } \alpha \in[0, r] \quad \text { (for some } r \text {) }
$$

Constrained Optimization: Necessary Condition

Need: $\nabla f(\boldsymbol{x}) \cdot \boldsymbol{s} \geqslant 0$ ("uphill that way") for any feasible direction \boldsymbol{s}.

- Not at boundary: \boldsymbol{s} and $-\boldsymbol{s}$ are feasible directions
$\Rightarrow \nabla f(x)=0$
\Rightarrow Only the boundary of the feasible set is different from the unconstrained case (i.e. interesting)
- At boundary: (the common case) $\boldsymbol{g}(x)=0$. Need:

$$
-\nabla f(\boldsymbol{x}) \in \operatorname{rowspan}\left(J_{\boldsymbol{g}}\right)
$$

a.k.a. "all descent directions would cause a change (\rightarrow violation) of the constraints."
Q: Why 'rowspan'? Think about shape of J_{g}.

$$
\Leftrightarrow-\nabla f(\boldsymbol{x})=J_{\boldsymbol{g}}^{T} \boldsymbol{\lambda} \quad \text { for some } \boldsymbol{\lambda} \text {. }
$$

Lagrange Multipliers

Seen: Need $-\nabla f(\boldsymbol{x})=J_{g}^{T} \boldsymbol{\lambda}$ at the (constrained) optimum.
Idea: Turn constrained optimization problem for \boldsymbol{x} into an unconstrained optimization problem for $(\boldsymbol{x}, \boldsymbol{\lambda})$. How?

Need a new function $\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})$ to minimize:

$$
\mathcal{L}(x, \lambda):=f(x)+\boldsymbol{\lambda}^{T} g(x) .
$$

Lagrange Multipliers: Development

$$
\mathcal{L}(x, \lambda):=f(x)+\lambda^{\top} g(x) .
$$

Then: $\nabla \mathcal{L}=0$ at unconstrained minimum, i.e.

$$
0=\nabla \mathcal{L}=\left[\begin{array}{c}
\nabla_{\boldsymbol{x}} \mathcal{L} \\
\nabla_{\boldsymbol{\lambda}} \mathcal{L}
\end{array}\right]=\left[\begin{array}{c}
\nabla f+J_{\boldsymbol{g}}(\boldsymbol{x})^{T} \boldsymbol{\lambda} \\
\boldsymbol{g}(\boldsymbol{x})
\end{array}\right] .
$$

Convenient: This matches our necessary condition!
So we could use any unconstrained method to minimized \mathcal{L}.
For example: Using Newton to minimize \mathcal{L} is called Sequential Quadratic Programming. ('SQP')

Demo: Sequential Quadratic Programming [cleared]

$$
\begin{aligned}
& \mathcal{L}(x, y, \lambda=f(\underline{x})+\lambda g(\underline{x}) \\
& \mathcal{L}(r, h, \lambda)=2 \pi r^{2}+2 \pi r h \\
& =\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=2 \pi x_{1}^{2}+2 \pi x_{1} x_{2} \\
& \nabla \mathcal{L}=\left[\begin{array}{c}
4 \pi x_{1}+2 \pi x_{2}+2 \\
2 \pi x_{1}+\pi \lambda x_{1} x_{2} \\
\pi \lambda x_{1}^{2} \\
H_{f}= \\
\pi x_{1}^{2} x_{2}-V
\end{array}\right] \\
& H_{f}=\left[\begin{array}{cc}
4 \pi & 2 \pi \\
2 \pi & 0
\end{array}\right] H_{g}=\left[\begin{array}{cc}
2 \pi x_{2} & 2 \pi x_{1} \\
2 \pi x_{1} & 0
\end{array}\right] \\
& V_{g}=\left[\begin{array}{ll}
2 \pi x_{1} x_{2} & \pi x_{1}^{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}=\mathcal{L}(x, \underline{x}) \\
& =f(\underline{x})+\underline{\lambda}^{\top} g^{\phi(x)} \\
& \nabla \mathcal{L}=\left[\begin{array}{l}
\nabla_{\underline{\underline{~}}} L \\
\nabla_{\underline{\lambda}} L
\end{array}\right]=\left[\begin{array}{c}
\nabla_{\underline{x}} f+J_{g}^{\top} \underline{\lambda} \\
g(x)
\end{array}\right] \\
& H_{\mathcal{L}}=\left[\begin{array}{cc}
\nabla_{x x} \mathcal{L} & J_{g}^{\top}(\underline{x}) \\
J_{j} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
H_{f}+\sum \lambda_{i} H_{j i}(x) & J_{g}^{\top} \\
J_{g} & 0
\end{array}\right]
\end{aligned}
$$

Inequality-Constrained Optimization

Want \boldsymbol{x}^{*} so that

$$
f\left(\boldsymbol{x}^{*}\right)=\min _{\boldsymbol{x}} f(\boldsymbol{x}) \text { subject to } \boldsymbol{g}(\boldsymbol{x})=0 \quad \text { and } \quad \boldsymbol{h}(\boldsymbol{x}) \leq 0 .
$$

Develop a necessary condition for a minimum.

Again: Assume we're at a feasible point, on the boundary of the feasible region. Must ensure descent directions are infeasible.

Motivation: $\boldsymbol{g}=0 \Leftrightarrow$ two inequality constraints: $\boldsymbol{g} \leq 0 \wedge \boldsymbol{g} \geq 0$.
Consider the condition $-\nabla f(\boldsymbol{x})=J_{\boldsymbol{h}}^{\top} \boldsymbol{\lambda}_{2}$.

- Descent direction must start violating constraint.

But only one direction is dangerous here!

- $-\nabla f$: descent direction of $f, \nabla h_{i}$: ascent direction of h_{i}
- If we assume $\boldsymbol{\lambda}_{2}>0$, going towards $-\nabla f$ would increase \boldsymbol{h} (and start violating $\boldsymbol{h} \leq 0$)

Lagrangian, Active/Inactive

Put together the overall Lagrangian.

$$
\mathcal{L}\left(x, \lambda_{1}, \lambda_{2}\right):=f(x)+\lambda_{1}^{T} g(x)+\lambda_{2}^{T} h(x)
$$

What are active and inactive constraints?

- Active: active $\Leftrightarrow h_{i}\left(\boldsymbol{x}^{*}\right)=0 \Leftrightarrow$ at 'boundary' of ineq. constraint
(Equality constrains are always 'active')
- Inactive: If h_{i} inactive $\left(h_{i}\left(x^{*}\right)<0\right)$, must force $\lambda_{2, i}=0$.

Otherwise: Behavior of h could change location of minimum of \mathcal{L}. Use complementarity condition $h_{i}\left(\boldsymbol{x}^{*}\right) \lambda_{2, i}=0$.
\Leftrightarrow at least one of $h_{i}\left(\boldsymbol{x}^{*}\right)$ and $\lambda_{2, i}$ is zero.

Karush-Kuhn-Tucker (KKT) Conditions

Develop a set of necessary conditions for a minimum.
Assuming J_{g} and $J_{\boldsymbol{h}, \text { active }}$ have full rank, this set of conditions is necessary:

$$
\text { (*) } \begin{aligned}
\nabla_{x} \mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}_{1}^{*}, \boldsymbol{\lambda}_{2}^{*}\right) & =0 \\
(*) \boldsymbol{g}\left(\boldsymbol{x}^{*}\right) & =0 \\
\boldsymbol{h}\left(\boldsymbol{x}^{*}\right) & \leq 0 \\
\boldsymbol{\lambda}_{2} & \geqslant 0 \\
(*) \boldsymbol{h}\left(\boldsymbol{x}^{*}\right) \cdot \boldsymbol{\lambda}_{2} & =0
\end{aligned}
$$

These are called the Karush-Kuhn-Tucker ('KKT') conditions.
Computational approach: Solve (*) equations by Newton.

Karush-Kuhn-Tucker (KKT) Conditions

Develop a set of necessary conditions for a minimum.
Assuming J_{g} and $J_{\boldsymbol{h}, \text { active }}$ have full rank, this set of conditions is necessary:

$$
\text { (*) } \begin{aligned}
\nabla_{x} \mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}_{1}^{*}, \boldsymbol{\lambda}_{2}^{*}\right) & =0 \\
(*) \boldsymbol{g}\left(\boldsymbol{x}^{*}\right) & =0 \\
\boldsymbol{h}\left(\boldsymbol{x}^{*}\right) & \leq 0 \\
\boldsymbol{\lambda}_{2} & \geqslant 0 \\
(*) \boldsymbol{h}\left(\boldsymbol{x}^{*}\right) \cdot \boldsymbol{\lambda}_{2} & =0
\end{aligned}
$$

These are called the Karush-Kuhn-Tucker ('KKT') conditions.
Computational approach: Solve (*) equations by Newton.

