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Constrained Optimization: Problem Setup
Want x* so that

f(x*) = minf(x) subjectto g(x)=0

No inequality constraints just yet. This is equality-constrained
optimization. Develop a (local) necessary condition for a minimum.

Recall unconstrained necessary condition, “no descent possible™:
Vf(x)=0

Look for feasible descent directions from x. (Necessary cond.: A)

s is a feasible direction at x if

x + as feasible for o € [0,r] (for some r)

Necessary cond.: “no feasible descent possible”. Assume g(x) = 0.
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Constrained Optimization: Necessary Condition

> Not at boundary: s and —s are feasible directions
= Vf(x)=0
= Only the boundary of the feasible set is different from the
unconstrained case (i.e. interesting)

» At boundary: (the common case) g(x) = 0. Need:
—Vf(x) € rowspan(Jg)

a.k.a. “all descent directions would cause a change
(—violation) of the constraints.”
Q: Why ‘rowspan’? Think about shape of Jg.

& —Vif(x) = JgT)\ for some A.

Need: Vf(x)-s > 0 (“uphill that way") for any feasible direction s.
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Lagrange Multipliers

Seen: Need —Vf(x) = JgT)\ at the (constrained) optimum.

Idea: Turn constrained optimization problem for x into an unconstrained
optimization problem for (x, A). How?

Need a new function £(x, A) to minimize:

L(x,A) = f(x) + A" g(x).
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Lagrange Multipliers: Development

L(x,A) = f(x) + A" g(x).

Then: V£ = 0 at unconstrained minimum, i.e.

0=VL = [g;ﬁ] _ [Vf +gJ(gx()X)T)‘] .

Convenient: This matches our necessary condition!

So we could use any unconstrained method to minimized L.
For example: Using Newton to minimize £ is called Sequential
Quadratic Programming. (‘SQP’)

.

Demo: Sequential Quadratic Programming [cleared]
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Inequality-Constrained Optimization
Want x* so that

f(x*) = minf(x) subjectto g(x)=0 and h(x)<O0.

Develop a necessary condition for a minimum.

Again: Assume we're at a feasible point, on the boundary of the
feasible region. Must ensure descent directions are infeasible.

Motivation: g = 0 < two inequality constraints: g < 0A g > 0.

Consider the condition —Vf(x) = J Xs.
» Descent direction must start violating constraint.
But only one direction is dangerous herel!
» —Vf: descent direction of f, Vh;: ascent direction of h;

» If we assume Ay > 0, going towards —Vf would increase h
(and start violating h < 0)




Lagrangian, Active/Inactive

Put together the overall Lagrangian.

L(x, A1, A2) := (x) + A{ g(x) + A7 h(x)

.

What are active and inactive constraints?

» Active: active < hi(x*) = 0 < at ‘boundary’ of ineq.
constraint
(Equality constrains are always ‘active’)

» Inactive: If h; inactive (hi(x*) < 0), must force Ay ; = 0.
Otherwise: Behavior of h could change location of minimum of
L. Use complementarity condition h;j(x*)A2,; = 0.

& at least one of hj(x*) and Xy ; is zero.
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Karush-Kuhn-Tucker (KKT) Conditions

Develop a set of necessary conditions for a minimum.

Assuming Jg and Jp active have full rank, this set of conditions is

necessary.
(¥)  VxL(x",A1,A3) 0
(x) g(x*) =0
h(x*) < 0
X > 0
0

() h(x7)- A2

These are called the Karush-Kuhn-Tucker (‘KKT") conditions.

Computational approach: Solve () equations by Newton.
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