

Objectives today 1. Step from linear least-squares to a constraint 2. Identify the duck form" st r problem. 3. In dro duce hagrange Multipliers λ doj. constraint $\nabla f \wedge \nabla g$ $\gamma) = d_{i}$ \downarrow 4. Define conditions for a minimum.

ATAX= ATb $x = (A^T A)^{-1} A^T b$ \rightarrow S. Pb = $A(A^TA)^{-}(A^Tb)$ projects b onto col(A) Things I to collA? $\begin{bmatrix} -a_0 \\ -a_1 \\ -a_2 \\ \vdots \end{bmatrix} Y = 0$

=> AT v = 0

 $\Rightarrow N(A^{T})$

P: b - g col(A) $P = A(ATA)^{-1}A^{T}$ $(T - P)^2 = T^2 - 2P + P^2$ = I - zP + P $= \mathbf{I} - \mathbf{P}$

Example n=2 m=1 Minimize subace area of a cylhder with volume V=1000 $f(r,n) = 2\pi rh + 2\pi r^2$ $q(r,h) = \pi r^2 h - V = O$

Intuition

f(x.y) minimize g (x,y) = 0 s.t.

walk along g(y, y) = 0View. f(x,y) unimized? where is

Ok, so $\nabla f = \lambda Tg$ for some λ ad $g=0 \Rightarrow \nabla_{\lambda}(f+\lambda g)=0$ $\neg L(x,y,h) = f(x,y) + kg(x,y)$

Constrained Optimization: Problem Setup

Want \mathbf{x}^* so that

$$f(\mathbf{x}^*) = \min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $\mathbf{g}(\mathbf{x}) = 0$

No inequality constraints just yet. This is *equality-constrained optimization*. Develop a (local) necessary condition for a minimum.

Necessary cond.: "no feasible descent possible". Assume g(x) = 0. Recall unconstrained necessary condition, "no descent possible":

$$abla f(oldsymbol{x}) = 0$$

Look for feasible descent directions from x. (Necessary cond.: A) s is a feasible direction at x if

 $\boldsymbol{x} + \alpha \boldsymbol{s}$ feasible for $\alpha \in [0, r]$ (for some r)

Constrained Optimization: Necessary Condition

Need: ∇f(x) ⋅ s ≥ 0 ("uphill that way") for any feasible direction s.
Not at boundary: s and -s are feasible directions
⇒ ∇f(x) = 0
⇒ Only the boundary of the feasible set is different from the unconstrained case (i.e. interesting)

• At boundary: (the common case) g(x) = 0. Need:

 $-\nabla f(\pmb{x}) \in \mathsf{rowspan}(J_{\pmb{g}})$

a.k.a. "all descent directions would cause a change (\rightarrow violation) of the constraints." Q: Why 'rowspan'? Think about shape of $J_{\mathbf{g}}$.

$$\Leftrightarrow -\nabla f(\boldsymbol{x}) = J_{\boldsymbol{g}}^T \boldsymbol{\lambda} \quad \text{for some } \boldsymbol{\lambda}.$$

Lagrange Multipliers

Seen: Need $-\nabla f(\mathbf{x}) = J_{\mathbf{g}}^T \boldsymbol{\lambda}$ at the (constrained) optimum.

Idea: Turn constrained optimization problem for x into an *unconstrained* optimization problem for (x, λ) . How?

Need a new function $\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda})$ to minimize:

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{\lambda}) := f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{g}(\boldsymbol{x}).$$

Lagrange Multipliers: Development

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{\lambda}) := f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{g}(\boldsymbol{x}).$$

Then: $\nabla \mathcal{L} = 0$ at unconstrained minimum, i.e.

$$0 = \nabla \mathcal{L} = \begin{bmatrix} \nabla_{\mathbf{x}} \mathcal{L} \\ \nabla_{\boldsymbol{\lambda}} \mathcal{L} \end{bmatrix} = \begin{bmatrix} \nabla f + J_{\mathbf{g}}(\mathbf{x})^{\mathsf{T}} \boldsymbol{\lambda} \\ \mathbf{g}(\mathbf{x}) \end{bmatrix}$$

Convenient: This matches our necessary condition!

So we could use any unconstrained method to minimized \mathcal{L} . For example: Using Newton to minimize \mathcal{L} is called *Sequential Quadratic Programming*. ('SQP')

Demo: Sequential Quadratic Programming [cleared]

L(x,y,)= f(x) + > g(x) $L\xi r,h,\lambda) = 2\pi r^2 + 2\pi rh$ $= \int (x_{1}) x_{2} (\lambda) = 2\pi x_{1}^{2} + 2\pi x_{1} x_{2}$ + λ (TTX, 2×2-V) $\nabla \mathcal{L} = \begin{cases} 4\pi \chi_1 + 2\pi \chi_2 + 2\pi \lambda_1 \chi_2 \\ 2\pi \chi_1 + \pi \lambda \chi_1^2 \end{cases}$ $TT \chi \chi_2 - V$ $H_{f} =$ $H_{g} = \begin{bmatrix} 4\pi & 2\pi \end{bmatrix} H_{g} = \begin{bmatrix} 2\pi x_{2} & 2\pi x_{3} \\ 2\pi & 0 \end{bmatrix} = \begin{bmatrix} 2\pi x_{1} & 0 \\ 2\pi x_{1} & 0 \end{bmatrix}$ $\begin{bmatrix} H_g + \Xi \lambda; H_{j}(x) & J_g^T \\ J_g & O \end{bmatrix}$ $\overline{V_q} = \left[2T(X_1 X_1 T X_7^2)\right]$

 $= \mathcal{L}(\underline{X},\underline{X}) + \underline{\lambda}^{T} g(\underline{x})$ $= f(\underline{X}) + \underline{\lambda}^{T} g(\underline{x})$ $\Sigma = \mathcal{L}(\mathbf{x}, \mathbf{x})$ $\nabla \mathcal{L} = \begin{bmatrix} \nabla_{x} \mathcal{L} \\ \nabla_{x} \mathcal{L} \end{bmatrix} = \begin{bmatrix} \nabla_{x} \mathcal{f} + \mathcal{J}_{g} \lambda \\ g(x) \end{bmatrix}$ $H_{2} = |\nabla_{xx} f|$ $J_{3}^{T}(\underline{x})$ \bigcirc LJ, $= \int H_{g} + \Sigma \lambda_{i} H_{y_{i}}(x)$ Jg] 0 - Jg

Inequality-Constrained Optimization

Want \boldsymbol{x}^* so that

 $f(\boldsymbol{x}^*) = \min_{\boldsymbol{x}} f(\boldsymbol{x})$ subject to $\boldsymbol{g}(\boldsymbol{x}) = 0$ and $\boldsymbol{h}(\boldsymbol{x}) \leq 0$.

Develop a necessary condition for a minimum.

Again: Assume we're at a feasible point, on the boundary of the feasible region. Must ensure descent directions are *infeasible*.

Motivation: $\boldsymbol{g} = 0 \Leftrightarrow$ two inequality constraints: $\boldsymbol{g} \leq 0 \land \boldsymbol{g} \geq 0$.

Consider the condition $-\nabla f(\mathbf{x}) = J_{\mathbf{h}}^T \lambda_2$.

- Descent direction must start violating constraint. But only one direction is dangerous here!
- ▶ $-\nabla f$: descent direction of f, ∇h_i : ascent direction of h_i
- If we assume λ₂ > 0, going towards −∇f would increase h (and start violating h ≤ 0)

Lagrangian, Active/Inactive

Put together the overall Lagrangian.

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2) := f(\boldsymbol{x}) + \boldsymbol{\lambda}_1^T \boldsymbol{g}(\boldsymbol{x}) + \boldsymbol{\lambda}_2^T \boldsymbol{h}(\boldsymbol{x})$$

What are active and inactive constraints?

• Active: active $\Leftrightarrow h_i(\mathbf{x}^*) = 0 \Leftrightarrow$ at 'boundary' of ineq. constraint

(Equality constrains are always 'active')

 Inactive: If h_i inactive (h_i(x*) < 0), must force λ_{2,i} = 0. Otherwise: Behavior of h could change location of minimum of L. Use complementarity condition h_i(x*)λ_{2,i} = 0.
 ⇔ at least one of h_i(x*) and λ_{2,i} is zero.

Karush-Kuhn-Tucker (KKT) Conditions

Develop a set of necessary conditions for a minimum.

Assuming J_g and $J_{h,active}$ have full rank, this set of conditions is *necessary*:

$$\begin{array}{rcl} (*) & \nabla_{\pmb{x}}\mathcal{L}(\pmb{x}^*,\pmb{\lambda}_1^*,\pmb{\lambda}_2^*) &=& 0 \\ & (*) & \pmb{g}(\pmb{x}^*) &=& 0 \\ & \pmb{h}(\pmb{x}^*) &\leq& 0 \\ & & \pmb{\lambda}_2 & \geqslant& 0 \\ & & (*) & \pmb{h}(\pmb{x}^*) \cdot \pmb{\lambda}_2 &=& 0 \end{array}$$

These are called the Karush-Kuhn-Tucker ('KKT') conditions. Computational approach: Solve (*) equations by Newton.

Karush-Kuhn-Tucker (KKT) Conditions

Develop a set of necessary conditions for a minimum.

Assuming J_g and $J_{h,active}$ have full rank, this set of conditions is *necessary*:

$$\begin{array}{rcl} (*) & \nabla_{\pmb{x}}\mathcal{L}(\pmb{x}^*,\pmb{\lambda}_1^*,\pmb{\lambda}_2^*) &=& 0 \\ & (*) & \pmb{g}(\pmb{x}^*) &=& 0 \\ & \pmb{h}(\pmb{x}^*) &\leq& 0 \\ & & \pmb{\lambda}_2 & \geqslant& 0 \\ & & (*) & \pmb{h}(\pmb{x}^*) \cdot \pmb{\lambda}_2 &=& 0 \end{array}$$

These are called the Karush-Kuhn-Tucker ('KKT') conditions. Computational approach: Solve (*) equations by Newton.