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Think about Energy
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How do we solve
sightrick!
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Intuition

minimize fix.x)
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Constrained Optimization: Problem Setup
Want x⇤ so that

f (x⇤) = min
x

f (x) subject to g(x) = 0

No inequality constraints just yet. This is equality-constrained
optimization. Develop a (local) necessary condition for a minimum.

Necessary cond.: “no feasible descent possible”. Assume g(x) = 0.

Recall unconstrained necessary condition, “no descent possible”:

rf (x) = 0

Look for feasible descent directions from x . (Necessary cond.: 6 9)

s is a feasible direction at x if

x + ↵s feasible for ↵ 2 [0, r ] (for some r)
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Constrained Optimization: Necessary Condition

Need: rf (x) · s > 0 (“uphill that way”) for any feasible direction s.
I Not at boundary: s and �s are feasible directions

) rf (x) = 0
) Only the boundary of the feasible set is different from the
unconstrained case (i.e. interesting)

I At boundary: (the common case) g(x) = 0. Need:

�rf (x) 2 rowspan(Jg )

a.k.a. “all descent directions would cause a change
(!violation) of the constraints.”
Q: Why ‘rowspan’? Think about shape of Jg .

, �rf (x) = JTg � for some �.
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Lagrange Multipliers

Seen: Need �rf (x) = JTg � at the (constrained) optimum.

Idea: Turn constrained optimization problem for x into an unconstrained
optimization problem for (x ,�). How?

Need a new function L(x ,�) to minimize:

L(x ,�) := f (x) + �Tg(x).
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Lagrange Multipliers: Development

L(x ,�) := f (x) + �Tg(x).

Then: rL = 0 at unconstrained minimum, i.e.

0 = rL =


rxL
r�L

�
=


rf + Jg (x)T�

g(x)

�
.

Convenient: This matches our necessary condition!

So we could use any unconstrained method to minimized L.
For example: Using Newton to minimize L is called Sequential
Quadratic Programming. (‘SQP’)

Demo: Sequential Quadratic Programming [cleared]
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Inequality-Constrained Optimization
Want x⇤ so that

f (x⇤) = min
x

f (x) subject to g(x) = 0 and h(x)  0.

Develop a necessary condition for a minimum.

Again: Assume we’re at a feasible point, on the boundary of the
feasible region. Must ensure descent directions are infeasible.

Motivation: g = 0 , two inequality constraints: g  0 ^ g � 0.

Consider the condition �rf (x) = JTh �2.
I Descent direction must start violating constraint.

But only one direction is dangerous here!
I �rf : descent direction of f , rhi : ascent direction of hi
I If we assume �2 > 0, going towards �rf would increase h

(and start violating h  0)
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Lagrangian, Active/Inactive
Put together the overall Lagrangian.

L(x ,�1,�2) := f (x) + �T

1 g(x) + �T

2 h(x)

What are active and inactive constraints?

I Active: active , hi (x⇤) = 0 , at ‘boundary’ of ineq.
constraint
(Equality constrains are always ‘active’)

I Inactive: If hi inactive (hi (x⇤) < 0), must force �2,i = 0.
Otherwise: Behavior of h could change location of minimum of
L. Use complementarity condition hi (x⇤)�2,i = 0.
, at least one of hi (x⇤) and �2,i is zero.
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Karush-Kuhn-Tucker (KKT) Conditions
Develop a set of necessary conditions for a minimum.

Assuming Jg and Jh,active have full rank, this set of conditions is
necessary:

(⇤) rxL(x⇤,�⇤
1,�

⇤
2) = 0

(⇤) g(x⇤) = 0
h(x⇤)  0

�2 > 0
(⇤) h(x⇤) · �2 = 0

These are called the Karush-Kuhn-Tucker (‘KKT’) conditions.

Computational approach: Solve (⇤) equations by Newton.
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