- Exam bel 5: optimization up to $\&$ inclandiry
equality-constraned

Representing funchoss:

- point values on a grid (n nodal ${ }^{n}$)
- symbolically
- polynomial $a+b x+c x^{2}+d x^{3}+\cdots$
\rightarrow coefficients w/resped to a basis
- rooks scaling (polynomids)

$$
\left(\left." m o d a\right|^{n}\right)
$$

Interpolation: Setup

Given: $\left(x_{i}\right)_{i=1}^{N},\left(y_{i}\right)_{i=1}^{N}$
Wanted: Function f so that $f\left(x_{i}\right)=y_{i}$
How is this not the same as function fitting? (from least squares)

- we're asking For ashing for equality \rightarrow no residual
\rightarrow better error result

Interpolation: Setup (II)
Given: $\left(x_{i}\right)_{i=1}^{N},\left(y_{i}\right)_{i=1}^{N}$
Wanted: Function f so that $f\left(x_{i}\right)=y_{i}$
Does this problem have a unique answer?

\rightarrow resolve by introducij abatis

Interpolation: Importance

Why is interpolation important?
G calculus
\rightarrow interpolate
G clothe thing (eeg, derivative) \rightarrow evaluate

Making the Interpolation Problem Unique
interpolant

$$
p_{n-1}(x)=\sum_{j=1}^{n} \alpha ; \varphi_{j}(x) \text { one }
$$

Find coefficients $\left(\alpha_{j}\right)$ via a linear system from nodes $\left(\mid x_{i}\right)_{i=1}^{n}$

$$
\begin{aligned}
& \qquad y_{i}=f\left(x_{i}\right)=p_{n-1}\left(x_{i}\right)=\sum_{j=1}^{n} \alpha_{j} \varphi_{j}\left(x_{i}\right) \\
& V \vec{\alpha}-\vec{y} \quad V=\left(\varphi_{j}\left(x_{i}\right)\right)_{i, j}
\end{aligned}
$$ with ger. basis: generalized Vandermondo matrix

$$
\begin{aligned}
& \vec{x}=\left(x_{i}\right)_{i=1}^{n} \\
& V=\left(\varphi_{j}\left(x_{i}\right)\right)_{i, j=1}^{b} \\
& V=\left(\begin{array}{ll}
\begin{array}{ll}
\varphi_{1}\left(x_{1}\right) & \varphi_{2}\left(x_{1}\right) \\
\varphi_{1}\left(x_{2}\right)
\end{array} & \\
\text { basis }
\end{array}\right) \text { nodes }
\end{aligned}
$$

Existence/Sensitivity
Solution to the interpolation problem: Existence? Uniqueness?
Existence/uniqueness for the linear system
Sensitivity?

- shallow answer: condition number of the linear system.

1: Lebesgue constant $\max _{x \in(a, b]}\left|p_{n-1}(x)\right| \leqslant \Lambda\|y\|_{0}$

Modes and Nodes (aka Functions and Points)

Both function basis and point set are under our control. What do we pick?
Ideas for points:

Ideas for basis functions:

- Monomials $1, x, x^{2}, x^{3}, x^{4}, \ldots$
- Functions that make $V=I \rightarrow$ 'Lagrange basis'
- Functions that make V triangular \rightarrow 'Newton basis'
- Splines (piecewise polynomials)
- Orthogonal polynomials
- Sines and cosines
- 'Bumps' ('Radial Basis Functions')
- Equispaced
- 'Edge-Clustered' (so-called Chebyshev/Gauss/... nodes)

Specific issues:

- Why not monomials on equispaced points?
Demo: Monomial interpolation [cleared]
- Why not equispaced?

Demo: Choice of Nodes for Polynomial Interpolation [cleared]

Lagrange Interpolation

Find a basis so that $V=I$, i.e.

$$
\varphi_{j}\left(x_{i}\right)= \begin{cases}1 & i=j \\ 0 & \text { otherwise }\end{cases}
$$

Lagrange Polynomials: General Form

$$
\varphi_{j}(x)=\frac{\prod_{k=1, k \neq j}^{m}\left(x-x_{k}\right)}{\prod_{k=1, k \neq j}^{m}\left(x_{j}-x_{k}\right)}
$$

Write down the Lagrange interpolant for nodes $\left(x_{i}\right)_{i=1}^{m}$ and values $\left(y_{i}\right)_{i=1}^{m}$.

Newton Interpolation

Find a basis so that V is triangular.

Why not Lagrange/Newton?

Better conditioning: Orthogonal polynomials

What caused monomials to have a terribly conditioned Vandermonde?

What's a way to make sure two vectors are not like that?

$$
\rightarrow \text { orthogonal }
$$

But polynomials are functions!

Orthogonality of Functions

How can functions be orthogonal?

$$
\begin{aligned}
\vec{f} \cdot \vec{g} & =\sum_{i=1}^{h} f_{i} g_{i}=\langle\vec{f}, \vec{g}\rangle \\
\langle f, g\rangle & =\int_{a}^{b} f(x) g(x) d x
\end{aligned}
$$

Constructing Orthogonal Polynomials

 How can we find an orthogonal basis?Demo: Orthogonal Polynomials [cleared] — Got: Legendre polynomials. But how can I practically compute the Legendre polynomials?

$$
(p, y)_{u}=\int u(x) f(x) g(x) d x
$$

Chebyshev Polynomials: Definitions

Three equivalent definitions:

- Result of Gram-Schmidt with weight $1 / \sqrt{1-x^{2}}$. What is that weight?
(Like for Legendre, you won't exactly get the standard normalization if you do this.)
- $T_{k}(x)=\cos \left(k \cos ^{-1}(x)\right)$
- $T_{k}(x)=2 x T_{k-1}(x)-T_{k-2}(x)$ plus $T_{0}=1, T_{0}=x$

