- Examlel S
- 4CH: Assignman I duc tody

$$
\begin{aligned}
& \text { (y. }-1 \text {. } \\
& \vec{x}_{i} \mid 1,1,1 \in n \text { poinls } \\
& \text { 4 basis Fuchion }\left(p_{i}\right)_{i=1}^{2} \\
& V \vec{\alpha}=\vec{y} \\
& p_{n-1}(y)=\sum \alpha_{i} \varphi_{i}(\lambda)
\end{aligned}
$$

$V d m$: equl spaced + uroromids ga Valm: gereral uodes e yaenal modes

Modes and Nodes (aka Functions and Points)

Both function basis and point set are under our control. What do we pick?
Ideas for points:

- Equispaced
- 'Edge-Clustered' (so-called Chebyshev/Gauss/... nodes)

Specific issues:

- Why not monomials on equispaced points?
Demo: Monomial interpolation [cleared]
- Why not equispaced?

Demo: Choice of Nodes for Polynomial Interpolation [cleared]

Lagrange Interpolation
Find a basis so that $V=I$, ie.

$$
\varphi_{j}\left(x_{i}\right)= \begin{cases}1 & i=j \\ 0 & \text { otherwise }\end{cases}
$$

Three nodes x_{1}, x_{2}, x_{3}

$$
\begin{aligned}
& \varphi_{1}(x)=\quad \frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}\left(x-x_{3}\right) \\
& \varphi_{2}(x)=\frac{\left(x-x_{1}\right)}{\left(x_{1}-x_{3}\right)} \\
& \varphi_{3}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3} \cdot x_{1}\right)\left(x_{3}-x_{2}\right)}
\end{aligned}
$$

Lagrange Polynomials: General Form

$$
\varphi_{j}(x)=\frac{\prod_{k=1, k \neq j}^{m}\left(x-x_{k}\right)}{\prod_{k=1, k \neq j}^{m}\left(x_{j}-x_{k}\right)}
$$

Write down the Lagrange interpolant for nodes $\left(x_{i}\right)_{i=1}^{m}$ and values $\left(y_{i}\right)_{i=1}^{m}$.

"inter polating polynomial (of doge $n-1$)"

Newton Interpolation
Find a basis so that V is triangular.

$$
\begin{aligned}
& \varphi_{i}(x)=\prod_{k=1}^{j}\left(x-x_{k}\right) \\
& \Rightarrow V \text { triangular } \\
& \Rightarrow \text { solve (@oln²) carl) } \\
& \text { with ow/ ow snbst. } \\
& \begin{array}{l}
x_{1} y_{1}>\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
x_{2} y_{2}>\frac{y_{3}-y_{2}}{x_{3}-x_{2}} \\
x_{3} y_{1}
\end{array} \\
& \rightarrow \text { coefficients car be } \\
& \text { read from divided } \\
& \text { differences }
\end{aligned}
$$

Why not Lagrange/Newton?
unfriendly for calculus

Chebyshev Polynomials: Definitions

$$
(f, g)=\int_{-1}^{1} f(x) g(x) w(x) d x
$$

Three equivalent definitions: w el teal = to legend $u(x)=$
Result of Gram-Schmidt with weight $1 / \sqrt{1-x^{2}}$. What is that weight?
(Like for Legendre, you wont exactly get the standard normalization if you do this.)

- $T_{k}(x)=\cos \left(k \cos ^{-1}(x)\right)$
- $T_{k}(x)=2 x T_{k-1}(x)-T_{k-2}(x)$ plus $T_{0}=1, T_{q}=x$

Chebyshev Interpolation
What is the Vandermonde matrix for Chebyshev polynomials?

$$
\left.x_{i}=\cos \left(\frac{1}{k} \pi\right) \quad i=0 \ldots k\right)
$$

Chibysher nodes of the second hind.

$$
\begin{aligned}
V_{i j} & =\cos \left(j \cdot \cos ^{-1}\left(\cos \left(\frac{i}{k} \pi\right)\right)\right) \\
& =\cos \left(\frac{j \cdot i}{k} \pi\right)
\end{aligned}
$$

V is the matrix of the disceth cosine trais fom $(D C T)$, a variat of the Fourion tranifion. \exists Fast Fonniew Trastom (FFT), so that matvecs (ost

Chebyshev Nodes

Might also consider roots (instead of extrema) of T_{k} :

$$
x_{i}=\cos \left(\frac{2 i-1}{2 k} \pi\right) \quad(i=1 \ldots, k) .
$$

Vandermonde for these (with T_{k}) can be applied in $O(N \log N)$ time, too.
Edge-clustering seemed like a good thing in interpolation nodes. Do these do that?

Demo: Chebyshev Interpolation [cleared] (Part I-IV)

Chebyshev Interpolation: Summary

Approximation Theory

$$
\begin{aligned}
& \text { and } \\
& \text { Approx. Practice }
\end{aligned}
$$

- Chebyshev interpolation is fast and works extremely well
- http://www.chebfun.org/ and: ATAP
- In 1D, they're a very good answer to the interpolation question
- But sometimes a piecewise approximation (with a specifiable level of smoothness) is more suited to the application

In-Class Activity: Interpolation

In-class activity: Interpolation

$$
f-p_{4-1}
$$

Truncation Error in Interpolation
If f is n times continuously differentiable on a closed interval I and $p_{n-1}(x)$ is a polynomial of degree at most n that interpolates f at n distinct points $\left\{x_{i}\right\}(i=1, \ldots, n)$ in that interval, then for each x in the interval there exists ξ in that interval such that

$$
\begin{aligned}
& f(x)-p_{n-1}(x)=\frac{f^{(n)}(\overrightarrow{\xi)}}{n!} \frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) .}{\text { Q interp.error is zero }} \\
& R(x):=f(x)-p_{n-1}(x) \quad \text { af nodes } \\
& Y_{x}(t)=R(d)-\frac{R(x)}{W(x)} W(t) . \quad W(d)=\prod_{i=1}^{h}\left(x-x_{i}\right)
\end{aligned}
$$

Truncation Error in Interpolation: cont'd.

$$
Y_{x}(t)=R(t)-\frac{R(x)}{W(x)} W(t) \quad \text { where } \quad W(t)=\prod_{i=1}^{n}\left(t-x_{i}\right)
$$

$Y_{x}(x)=0$. Assuming x is distinct from the x_{i}, Y_{x} has $n+1$ rooks.

- Y_{x}^{\prime} has 4 roots, ... $Y_{x}^{\text {(n) }}$ has at least one root in the inter val. Call that root ξ.
- $p_{n-1}(x)$ is poly of degree $\leq n-1$.

$$
\begin{align*}
& R^{(n)}(t)=f^{(n)}(t) \tag{a}\\
& y_{x}^{(n)}(t)=f^{(n)}(t)-\frac{R(x)}{w(x)} n!
\end{align*}
$$

Plug is $;$

$$
\begin{aligned}
& 0=\rho^{(n)}(\xi)-\frac{R(x)}{W(x)} n! \\
& R(x)=\rho \cdot \rho_{1-1} \\
&=\frac{f^{(n)}(\xi)}{n!} W(x)
\end{aligned}
$$

Error Result: Connection to Chebyshev
What is the connection between the error result and Chebyshev interpolation?

- Good nodes wald make $|W(t)|$ as small a spossib/f
- Chibyshev is the optimal node set to cortrol|W(|)|.
- Chela nodes only nearly optimal in terms of the Lebesgue cont.
- Chebyste u best-approximating polynomial \# Chebysher inter polar.

Demo: Chebyshev Interpolation [cleared] (Part V)

Error Result: Simplified Form

Boil the error result down to a simpler form.
\square

- Demo: Interpolation Error [cleared]
- Demo: Jump with Chebyshev Nodes [cleared]

