- nw 13
- 4CH assignment
- examlet 5 page grades

$$
\begin{gathered}
f \in C^{n} \quad \mid x i \\
\left.\left.f(x)-p_{n-1}(x)=\frac{f^{(n)}(\xi)}{n!} \right\rvert\, x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)
\end{gathered}
$$

Error Result: Simplified Form
Boil the error result down to a simpler form.

$$
\left|f^{(n)}(x)\right| \leqslant M \quad(x \in J)
$$

intevord length $|I|-h=b-a$

$$
\begin{gathered}
\left(x-x_{i}\right): \text { If } x \in I,\left|x-x_{i}\right| \in L \\
\operatorname{Errov}(h)=\left|f(x)-p_{n-1}(x)\right| \leq C M \cdot h^{h} \\
\text { Error }=O\left(h^{h}\right) \quad(\text { as } h \rightarrow 0) \\
C_{n-\text { th odor convergnce }}
\end{gathered}
$$

Demo: Interpolation Error [cleared]

Going piecewise: Simplest Case

Construct a pieceweise linear interpolant at four points.

Lands $*$ arbilinary number of middle

Piecewise Cubic ('Splines'): Accounting •
x_{0}, y_{0}
x_{1}, y_{1}
x_{2}, y_{2}
x_{3}, y_{3}
f_{3}
$a_{3} x^{3}+b_{3} x^{2}+c_{3} x+d_{3}$
${ }_{\mid}^{x_{3}, y_{3}}$

P

Outline

Introduction to Scientific Computing

Systems of Linear Equations
Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation
Numerical Integration
Quadrature Methods
Accuracy and Stability
Gaussian Quadrature
Composite Quadrature
Numerical Differentiation
Richardson Extrapolation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs
Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

$$
\int_{a}^{b} f(x)^{a x} \approx \int_{n}^{b} \rho_{n-1}(x) d x \sum_{i} \int_{a}^{b} \varphi_{i}(x) d x
$$

$$
f(x) \approx p_{n-1}(x)=\sum \alpha_{i} \varphi_{i}(x)
$$

$$
f^{\prime}(x) \approx p_{n-1}^{\prime}(x)=\sum \alpha_{i} \varphi_{i}^{\prime}(x)
$$

Numerical Integration: About the Problem
What is numerical integration? (Or quadrature?)
Giver $a_{1} b_{1}$, Fapproxinadi; $\int_{a}^{b} f(x) d x$

What about existence and uniqueness?

- F integrable (Riemann, Lebesgue)
- f is unique for pw. continuons/bonudel

Conditioning

Derive the (absolute) condition number for numerical integration.

$$
\begin{aligned}
\hat{f}_{(x)} & =f_{(x)}^{+} e(x) \\
& \left|\int_{1}^{b} f(x) d x-\int_{1}^{b} \hat{f}(x) d x\right| \\
& =\left|\int_{a}^{b} e(x) d x\right| \leqslant \int_{a}^{b}|e(x)| \leq(b, a) \operatorname{man}_{x \in[a, b]}^{\max }|e(x)|
\end{aligned}
$$

Interpolatory Quadrature
Design a quadrature method based on interpolation.

$$
\begin{aligned}
& f(x) \approx \sum_{i=1}^{n} \alpha_{i} e_{i}(x) \\
& \int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} \alpha_{i} \int_{a}^{b} \varphi_{i}(x) \\
& {\left[\begin{array}{l}
\text { expen rive be canse } \\
\stackrel{\alpha}{\alpha} \text { needs to be fonid }
\end{array}\right.}
\end{aligned}
$$

Goal: $\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$

Interpolatory Quadrature: Examples
Let l_{i} be the Lagrage e poly nominds for noder $\left\{x_{i}| |_{i=1}^{n}\right.$

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i}\right) \underbrace{\int_{a}^{b} l_{i}(x)}_{w_{i}}
$$

hodes weights.
equis paced: Newlon-Cotes qualrature
Chehysher nodes: Clenshuw. Curtis quadratame (+poly basis)

Interpolatory Quadrature: Computing Weights
How do the weights in interpolator quadrature get computed?

Midpoint vale:

Turns out: If's general: quad rules w/ odd numbers of point have one "boons' dog ne of elachoss

Examples and Exactness

To what polynomial degree are the following rules exact?

Midpoint rule $\quad(b-a) f\left(\frac{a+b}{2}\right)$

Trapezoidal rule $\quad \frac{b-a}{2}(f(a)+f(b))$

Simpson's rule

$$
\frac{b-a}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right)
$$

1

3

Interpolatory Quadrature: Accuracy
Let p_{n-1} be an interpolant of f at nodes x_{1}, \ldots, x_{n} (of degree $n-1$)
Recall

$$
\sum_{i} \omega_{i} f\left(x_{i}\right)=\int_{a}^{b} p_{n-1}(x) \mathrm{d} x
$$

What can you say about the accuracy of the method?

$$
\begin{aligned}
& \left|\int_{a}^{h} f(x) d x-\int_{a}^{b} p_{n-1}(x) d x\right| \\
\leq & \int_{a}^{b} \mid \rho(x)-p_{n-1}(x) \| d x \\
\leq & (b-a)\left\|f-p_{n-1}\right\|_{\infty} \\
\leq & (b \cdot a) C h^{n} \cdot\left\|f^{(n)}\right\|_{\infty} \\
= & \left(h^{n+1}\left\|f^{(n)}\right\|_{\infty}\right.
\end{aligned}
$$

Quadrature: Overview of Rules

	n	Deg.	Ex.Int.Deg. $(\mathrm{w} /$ odd $)$	Intp.Ord.	Quad.Ord. $($ regular $)$	Quad.Ord. $(\mathrm{w} /$ odd $)$
		$n-1$	$(n-1)+1_{\text {odd }}$	n	$n+1$	$(n+1)+1_{\text {odd }}$
Midp.	1	0	1	1	2	3
Trapz.	2	1	1	2	3	3
Simps.	3	2	3	3	4	5
S. 3/8	4	3	3	4	5	5

- n: number of points
- "Deg.": Degree of polynomial used in interpolation ($=n-1$)
- "Ex.Int.Deg.": Polynomials of up to (and including) this degree actually get integrated exactly. (including the odd-order bump)
- "Intp.Ord.": Order of Accuracy of Interpolation: $O\left(h^{n}\right)$
- "Quad.Ord. (regular)": Order of accuracy for quadrature predicted by the error result above: $O\left(h^{n+1}\right)$
- "Quad.Ord. (w/odd):" Actual order of accuracy for quadrature given 'bonus' degrees for rules with odd point count
Observation: Quadrature gets (at least) 'one order higher' than interpolation-even more for odd-order rules. (i.e. more accurate)

Interpolatory Quadrature: Stability

Let p_{n} be an interpolant of f at nodes x_{1}, \ldots, x_{n} (of degree $n-1$) Recall

$$
\sum_{i} \omega_{i} f\left(x_{i}\right)=\int_{a}^{b} p_{n}(x) \mathrm{d} x
$$

What can you say about the stability of this method?
\square
So, what quadrature weights make for bad stability bounds?

