Logishis:

- HU13 (due Wed)
- 4ch2 (dne
Dec 14)
-Final $\quad f=1: w_{1}+w_{2}+\cdots+w_{n}=b-a$
$p\left(c_{1}=x: \omega_{1} x_{1}+\omega_{2} x_{2}+\cdots+w_{n} x_{n}=\frac{b^{7}}{2}-\frac{g^{2}}{2}\right.$

midpoint Newton-Cotes quadrules
- tmperoidel
- Simpsoismh

odd \# prints integrate an extern dogie

Quadrature: Overview of Rules

		n	Deg.	Ex.Int.Deg. (w/odd)	Intp.Ord.	Quad.Ord. (regular)	Quad.Ord. (w/odd)
			$n-1$	$(n-1)+1_{\text {odd }}$	n	$n+1$	$(n+1)+1_{\text {odd }}$
\rightarrow	Midp.	1	0	1	1	2	3
	Trapz.	$\underline{2}$	1	1	2	3	3
	Simps.	3	2	3	3	4	5
	S. $3 / 8$	4	3	3	4	5	5

- n : number of points

$$
C E(n)=O\left(h^{\circ}\right)
$$

- "Deg.": Degree of polynomial used in interpolation ($=n-1$)
- "Ex.Int.Deg.": Polynomials of up to (and including) this degree actually get integrated exactly. (including the odd-order bump)
- "Intp.Ord.": Order of Accuracy of Interpolation: $O\left(h^{n}\right)$
- "Quad.Ord. (regular)": Order of accuracy for quadrature predicted by the error result above: $O\left(h^{n+1}\right)$
- "Quad.Ord. (w/odd):" Actual order of accuracy for quadrature given 'bonus' degrees for rules with odd point count
Observation: Quadrature gets (at least) 'one order higher' than interpolation-even more for odd-order rules. (i.e. more accurate)

Interpolatory Quadrature: Stability
Let p_{n} be an interpolant of f at nodes x_{1}, \ldots, x_{n} (of degree $n-1$)
Recall

$$
\sum_{i} \omega_{i} f\left(x_{i}\right)=\int_{a}^{b} p_{n}(x) \mathrm{d} x
$$

What can you say about the stability of this method?

$$
\begin{aligned}
& \hat{f}(n)=f(x)+e(t) \\
& \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)-\sum w_{i} \hat{f}\left(x_{i}\right)\left|\leq \sum_{i=1}^{n}\right| w_{i} e\left(x_{i}\right)\left|\leq\|e\|_{\infty} \sum_{i=1}^{n}\right| w_{i}
\end{aligned}
$$

So, what quadrature weights make for bad stability bounds?

$$
\sum_{i=1}^{n} \omega_{i}=b-a \quad \text { weights } J / \text { oscillating signs bad. }
$$

About Newton-Cotes

What's not to like about Newton-Cotes quadrature?
Demo: Newton-Cotes weight finder [cleared] (again, with many nodes)

Gaussian Quadrature

So far: nodes chosen from outside.
Can we gain something if we let the quadrature rule choose the nodes, too? Hope: More design freedom \rightarrow Exact to higher degree.

I dea: still method of under. coifs
But: 'nodes also unknown' ${ }^{\text {n }}$
\rightarrow analytically sol rabble
solution for nodes is "roots of (e gan Ne polys'
Demo: Gaussian quadrature weight finder [cleared]

Composite Quadrature

High-order polynomial interpolation requires a high degree of smoothness of the function.
Idea: Stitch together multiple lower-order quadrature rules to alleviate smoothness requirement.
e.g. trapezoidal

Error in Composite Quadrature

$$
a_{i+1}-a_{i}=h
$$

What can we say about the error in the case of composite quadrature?

$$
\begin{aligned}
& \text { Error for single inter val: }\left|\int_{a_{i}}^{a_{i+1}} f \cdot P_{n-1} d x\right| \leq C \cdot h^{h i 1} \cdot\left\|f^{(h)}\right\| \|_{0} \\
& \left|\int_{h}^{h} f(x) d r-\sum_{j=1}^{m} \sum_{i=1}^{n} w_{i, i} f\left(x_{i, j}\right)\right| \leq C\left\|f^{(n)}\right\|_{\infty} \sum_{j=1}^{m} \underbrace{\left(a_{j}-a_{j-1}\right)}_{h})^{n+1} \\
& \leq C \cdot\left\|\rho^{h_{1}}\right\|_{\infty} \sum_{j=1}^{m} \underbrace{\left(a_{j}-a_{j-1}\right)^{n}}_{\varepsilon h^{n}}\left(a_{j}-a_{j-1}\right) \leqslant C \cdot\left\|\rho^{a n}\right\|_{\infty} h^{n}\left(b_{-a}\right)
\end{aligned}
$$

Composite Quadrature: Notes

Observation: Composite quadrature loses an order compared to non-composite.

Idea: If we can estimate errors on each subinterval, we can shrink (e.g. by splitting in half) only those contributing the most to the error. (adaptivity, $\rightarrow \mathrm{hw}$)

Taking Derivatives Numerically
Why shouldn't you take derivatives numerically?

$$
f^{\prime}(x)=\frac{f(x+l \mid-f(x)}{h}
$$

- Cancellation
- Susceptible. to noise
- ∂_{x} is an unbounded opordor
$\|\rho\|_{\infty} \varepsilon \mid \quad \Rightarrow \quad\left\|f^{\prime}\right\|_{\infty}$ bound $e^{i \alpha x} \quad\left(e^{i \alpha x}\right)^{\prime}=(i \alpha) e^{i \alpha r}$

Numerical Differentiation: How?
How can we take derivatives numerically?

$$
\begin{aligned}
& f(\xi) \approx p_{n-1}|\xi|=\sum_{i=1}^{n} \alpha_{i} p_{i}(\xi) \\
& f^{\prime}(\xi) \approx p_{n-1}^{\prime}|\xi|=\sum_{i=1}^{n} \alpha_{i} p_{i}^{\prime}(\xi)
\end{aligned}
$$

Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Basics)

Numerical Differentiation: Accuracy
How accurate is numerical differentiation (with a polynomial basis)?

$$
\begin{aligned}
& f(x)-p_{n-1}(x)=\frac{\left.f^{n n} \mid \xi\right)}{n!} \prod_{i=1}^{n}\left(x-x_{i}\right) \\
& f^{\prime}(x)-p_{n-1}^{\prime}(x) \approx \frac{\left.f^{(n)} \mid \xi\right)}{n!} \overbrace{\left(\prod_{i=1}^{n}\left(x-x_{i}\right)\right)^{\prime}}^{s h^{n-1}}
\end{aligned}
$$

Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Accuracy)

Differentiation Matrices

How can numerical differentiation be cast as a matrix-vector operation?
\square
Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Build D)

